
April 27, 2007

Introduction to Software Engineering

Group 13
http://software-ece.rutgers.edu/~group713/

REPORT THREE

Restaurant Point-of-Sale System

 Moustafa H.Abdelbaky

 Albert Lalaj

 Waleed N.Mina

 Boris F.Petrovsky

 Bryan A.Rabin

 Ling J.Yang

Table of Contents

2. Contributions... 3
3. Summary of Changes.. 6
4. Client’s Statement of Requirements: .. 9
5. Glossary of Terms:.. 13
6. Functional Requirements Specification: ... 16

Stakeholders.. 16
Actors and Goals... 16
Use Cases .. 19
Use Case Diagram: ... 32
System Sequence Diagrams:... 34

7. Nonfunctional Requirements: ... 43
8. Domain Analysis:.. 45

Domain Model: ... 45
System Operation Contracts: .. 46

9. Interaction Diagrams... 48
10. Class Diagram and Interface Specification:.. 61

Class Diagram:.. 61
Data Types and Operation .. 62
Object Constraint Language Contracts ... 63

11. System Architecture and System Design:... 66
Architectural Styles... 66
Identifying Subsystems:.. 67
Mapping Subsystems to Hardware ... 69
Persistent Data Storage: .. 72
Database Schema: ... 73
Network Protocol:... 74
Global Control Flow: .. 75
System Requirements: .. 78

12. Algorithms and Data Structures:... 79
Algorithms .. 79
Data Structures.. 79

13. User Interface Design and Implementation: ... 81
Some typical usage scenarios: .. 81
Example User Interfaces:.. 84
Ease-of-Use Analysis:... 93

14. History of Work & Current Status of Implementation: .. 95
Summary of technical stages .. 97
Current status of Implementation.. 98

15. Conclusions and Future Work: ... 99
16. References:.. 102

2. Contributions

Moustafa

• Functional Requirements Specification:

1. Revised the Actors and their goals as some changes were made, where some

use case will not be implemented for the moment.

2. Worked on the full description for eight of our fully described Use Cases and

modified a few of the previously described Use Cases.

3. Introduced four new Use Cases to our Functional Requirement Specifications

• Interaction Diagrams:

1. Redesigned six of our Interactions Diagrams and made all the changes needed

to accommodate the updated Use Cases.

2. Described Interaction Diagrams, and explained the Design Principles as well

as the Design Patterns for all the Use Cases of the Interaction Diagrams.

• Class Diagram and Interface Specifications:

Described all the Designed Patters used to achieve the hierarchy of the Class

Layout and the Interface Specifications.

Albert

• Described Summary of Changes and listed all the changes under each activity.

• History of Work and Current Status of Implementation:

1. Described the History of Work throughout the whole lifetime of the project.

2. Compared side by side the initial goals with what was actually achieved.

• Conclusions and Future Work:

1. Describe the learning experience through out the project and important

conclusions that were drawn from all the Team Members at the end of this

course.

2. Expressed the Future Plans of Group 13 in possible new products as well as

describing the additional features for POS project that are planned to be

implemented in the future.

Waleed

• Client’s Statement of Requirements:

• Domain Analysis:

1. Redesigned the Domain Model to reflect the changes made to the Use Cases

and the goals of each Actor.

2. Updated the attributes, associations and concepts were deleted to

accommodate the project functionality.

• System Architecture and System Design:

Made the necessary changes to System Requirements and Network Protocol to

support the replacement of the PDA with BalackBerry phones and revised the

diagram for Mapping Subsystems to Hardware.

Boris

• Functional Requirements Specification:

1. Fully described four of the Use Cases that we decided to elaborate on this

report and revised some of the Use Case described on the previous reports.

2. Revised the description of Actors and Goals.

• Reviewed the Report I and Report II and summarized the uncompleted parts and

 the errors that were targeted to be revised on Report III.

Bryan

• Functional Requirements Specification:

1. Described how the Refresh Class interacted with Use Cases and helped

implementing it into the Class Diagram.

2. Revised the names of the GUI classes.

• Design Analysis:

1. Helped revising the Domain Model, implementing the different changes.

2. Updated Operation Contracts for the Design Analysis

Bryan

• Interaction Diagrams:

1. Redesigned six of our Interactions Diagrams and made all the changes needed

to accommodate the updated Use Cases.

• System Architecture and System Design:

1. Redesigned the Subsystem Analysis Diagram to help Identifying Subsystems.

• User Interface Design and Implementation:

1. Introduced the Chef GUI interface and updated the Examples of the User

Interfaces showing the progress on implementation of our User Interfaces.

2. Revised the description of the User Interfaces and the way they interact with

each other.

Ling

• Functional Requirements Specification:

1. Revised the Use Case Diagram

2. Designed the additional System Sequence Diagrams for new descriptions of

the Use Cases.

• Nonfunctional Requirements: Revised the Nonfunctional Requirements to clarify

some misunderstanding, and described the Implementation, Interface,

Operation, Packaging and Legal requirement that weren’t mention in the previous

reports.

• Interaction Diagrams:

Redraw all the Interaction Diagrams after all the updates were made to the Use

Cases.

• Class Diagram and Interface Specifications:

Revised the Class Diagram and specified the Data Types used as well as the

Object Constraint Language.

All the team members contributed equally towards:

Glossary and References.

3. Summary of Changes

Client’s Statement of Requirements

The statement of requirements was revised to remove all the unclear statements and

words to make it more readable and easy to understand to the client. Host Access gained

a new administrative feature by assigning severs to specific table. System network

diagram was updated. Some of the System Actors roles were removed to approach a

precise description of the project.

Functional Requirements Specification

Actors and their Goals were also changed based on the changes that were done to some of

the used cases. Use Cases -#1 and -#2 (clock in, clock out) were completely removed and

will not be implemented in the final demo. Four new Use Cases were introduced to

satisfy more goals for our Actors, UC-#29 (Host assigns a default server to a table), UC-

#30 (Chef or bartender marks order ready), UC-#31 (Cancel Item), UC-#32 (Send

messages for any reason). Also more use cases were fully described. A total of 12 cases

were fully described compared with only four on the previous reports. UC-#3, UC-#5,

UC-#7, UC-#14, UC-#15, UC-#18, UC-#20, UC-#21, UC-#22, UC-#24, UC-#25, UC-

#26.

Use Cases that will not be implemented but would be possible to implement in the future

UC-#1, UC-#2, UC-#8, UC-#12, UC-#17, UC-#27, UC-#28 were clearly labeled so are

easy to be noticed. Some use cases UC-#22, UC-#23, UC-#24 were modified from their

previous description. System Sequence Diagrams were updated to incorporate the new

and modified use cases that will be completed for the final demo. They were ordered in

the correct way and more System Sequence Diagrams were drawn to match with the new

Use Cases that were added.

Nonfunctional Requirements

The nonfunctional requirements were revised and to clarify some misunderstanding and

five more requirements were added.

Domain Analysis

Domain model diagram was fully revised and updated to maintain a better understanding

of the project. Changes including attributes of some old concepts were made and some

new associations were added. Also some concepts were deleted to accommodate the

project functionality. System Operational Contracts were updated to reflect the changes

made in the Domain Model Diagram. The new

Interaction Diagrams

New interaction diagrams were designed and drawn as well as all the previous ones were

completely changed not to allow any errors and perfectly match the rest of the report. A

great effort was invested into the Interaction Diagrams as they are one of the most

important parts of this report.

Class Diagram and Interface Specification

Class Diagram was revised to show all the recent changes that were made to our

programming and the Refresh Class was added to the Diagram. Data Types Operations

Diagram was also updated as well as the Object Constrain Language Contracts. Design

Principles was a new part added to this section.

System Architecture and System Design

System Architecture was partially revised. The main areas of change included Identifying

Subsystems, where the Diagram of Subsystems Analysis was changed to match all Use

Cases. Mapping Subsystems to hardware also had its Diagram changed to reflect the use

of BlackBerrry phones instead of PDA’s. Our Database Schema was also changed to

show the addition of the table Messages and also instead of having one table for Orders

we actually use Inactive Orders and Active Orders where at the moment an order is active

it temporarily stays on the Active Orders table and then as soon as it get closed it gets

moved to the Inactive Orders table.

User Interface Design and Implementation

Under User Interface Design the part of Examples of GUI Interfaces was updated and the

GUI for the Chef was created. Usages Scenarios were also revised and more discussion

was about the User Interfaces was presented.

History of Work, Conclusions and Future Work

History of Work throughout the whole lifetime of the project was described in details and

the changes made along the way were compared side by side with the initial plans.

Conclusions that Group 13 arrived after working on this project were described in details

and also the learning experience through out the project including important conclusions

that were drawn after using the principles that we learned in this Software Engineering

Course. At the end future plans of Group 13 were listed describing possible new products

as well as describing the additional features for POS project that are planned to be

implemented in the future.

4. Client’s Statement of Requirements:

Since all restaurants operate on a very low scope, every dollar saved will count toward
the bottom line. A POS system can give you a new level of control over your restaurant
operations, helping you increase efficiency, boost profits, and fine-tune inventory
management. Switching from a traditional cash register and paper-based orders to a
restaurant computer system can be hard, but the return on investment can really make it
worth your time and effort. A POS is a must if you wish to operate your restaurants at the
maximum effectiveness possible.

 Basic POS Features

o Operate more efficiently
o Reduce employee errors
o Increase table rotation speeds

 Touch Screen Monitor for Order Entry

o Designed especially for touch screen & light pen operation

 BlackBerry For Order Entry

o Server uses a BlackBerry with displayed interface menu to take an
order

 BlackBerry Pearl 8100

System Network

System Actors’ Roles

 Administrator Tools (Manager): Statistical business analysis: see profit
 break-down by hour or by menu-item, either graphically or textually.

 Ability to check for example:

o Menu item popularity
o Average turnaround time (How long patrons spend in the

restaurant.)
o Average preparation time (Time from when the order is placed to

when it is ready)

 Administrative power over employee profiles: the ability to create and
 modify profiles, track employee activities, and authorize restricted server
 activities:

o Profiles are data structures that contain an employee’s personal
information, such as his name, login ID, and time sheet

o If the employee is a server, his profile also contains information
about the tables for which he is responsible. From his profile, the
individual tabs for those tables can be accessed

o The concise and effective ability to manage all aspects of
restaurant operations

o Maintain employee schedule based on previous sales volume
o Update floor plan (Modify how tables/section, how many sections)
o Access records (Statistics)

 Host’s Access: Assigns table to customer. Fairly distributes customers
 among tables that are assigned to specific server. Also assigns server to
 table, in the case when the customer desires to sit in specific place where
 all servers are busy.

 Server’s Access: Track multiple tables under one profile:
 A manager assigns a group of tables to a specific server, and the server
 accesses a tab for each table in his or her profile. Now Server can
 electronically update kitchen orders: i.e., items entered onto a tab are sent
 to the kitchen staff through the network.

 Bartender Access: Maintain tabs at the bar with ability to start, add to,
 and close orders. Maintain records of cash sales for end of shift report.
 Also provide alerts based on tab information on excessive alcohol intake
 to avoid over serving. In addition, Bartender report when an order is
 ready.

Chef’s Access: The availability of computer monitors in the kitchen that
are networked through the archiving to the ones on the restaurant floor to
provide immediate access to orders. In addition to that orders placed by
server using a BlackBerry are displayed to the kitchen staff through a
queue, i.e., on a first-in, first-out basis. The priority scheduling will be
included to allow more efficient expediting of orders.

 Customer Access: Table top computers can be placed at certain booths to
 allow direct ordering and payment by the customer. Frequent customers
 could have their information stored by the system to further increase ease
 and efficiency.

 Flexible Menu Item Pricing Support: Allow you to specify different
 menu item prices for each of the order types.

 Employee Staff Cash Register: Allow each employee be their own
 cashier. It is easy to read shift end report. All money collected by the
 employee are accounted for.

 Cash Register Functionalities: Full control over your money handling
 operations. Track your money trail with accountability.

The Old Fashion System

 Solving the problem for this “old fashion” system works but yields a large
amount of tab receipts, wastes a lot of time and is simply out-of-date. In old fashion
systems, waiters have to carry pads around to take orders, always have a working pen and
be sure to keep each bill organized and “synchronized” with the proper table. Another
issue is record maintenance. In the old system, when everything is done by paper, the
management is responsible to keep all information saved and organized, which is no easy
task. Everyday tabs are collected, data needs to be organized and employees need to get
paid. This requires a great deal of time and attention from the managers.

5. Glossary of Terms:
Clients: business owner or other parties buying our software

Customers: guests going to the restaurant and using the system

Chef: cook or chef preparing the food in the kitchen

Server: waiter or waitress serving customers of the restaurant

Administrator: Restaurant Manager(s)

Host: person in charge of seating customers as they come to the restaurant

POS: An Abbreviation for Point of Sale

Concepts (Domain Model): A Concept is something that has a distinct, separate
existence, though it need not be a material existence. In particular, abstractions and legal
fictions are usually regarded as concepts. In general, there is also no presumption that an
Concept is animate. Entities are used in system developments as models that display
communications and internal processing of say documents compared to order processing.

Attributes (Domain Model): An Attribute is a named property of a class defining a
range of the values an object can contain.

Association (Domain Model): Is a relationship between two or more classes denoting
the possible links between instances of the classes. An association has a name and can
have multiplicity and role information attached to each of its ends.

Archiving:
Archiving is the process of getting rid of old data (or data that is not valid anymore)

from the main production databases.

Text field:

An area in which it is necessary for the user to enter text instead of simply clicking or

touching the screen.

Wireless Access Point: Access points used in home or small business networks are

generally small, dedicated hardware devices featuring a built-in network adapter,

antenna, and radio transmitter. Access points support Wi-Fi wireless communication

standards.

A domain model: can be thought as a conceptual model of a system. A domain model

will tell about the various entities involved and their relationships. The domain model is

created to understand the key concept of the system and to familiarize with the

vocabulary of the system.

User Layer Displays the content sent from the server, storing and retrieving any cookie

state in the process

Presentation Layer

Processes and delivers display content to browser (e.g. HTML), along with any cookie

state in the process

Logic Layer Specifies the business objects and rules of the application, and handles

interfacing between the presented information and the stored data.

Database Layer Stores the nonvolatile state of the application, and exposes ways to

access this state

JDBC is an API for the Java programming language that defines how a client may access

a database. It provides methods for querying and updating data in a database. JDBC is

oriented towards relational databases.

Threads are a way for a program to fork (or split) itself into two or more simultaneously

(or pseudo-simultaneously) running tasks. Threads and processes differ from one

operating system to another, but in general, the way that a thread is created and shares its

resources is different from the way a process does.

API – Application Programming Interface - a source code interface that a computer

system or program library provides in order to support requests for services to be made of

it by a computer program

Blackberry – Specific brand of Smartphone developed by Research in Motion (RIM).

Includes its own API for application development.

JDE – Java Development Environment – a software development kit aimed specifically

at Java development

Midlet – A program for embedded devices, more specifically the Java ME virtual

machine. Generally, these are games and applications that run on a cell phone.

Servlet – An object that receives a request (ServletRequest) and generates a response

(ServletResponse) based on the request.

Swing UI– a very popular Java graphics library used for GUI development

WYSIWYG – acronym for What You See Is What You Get

Response time - The amount of time elapsed between the dispatch (time when task is
ready to execute) to the time when it finishes its job (one dispatch)

Structured Query Language (SQL) - The most popular computer language used to
create, retrieve, update and delete data from relational database management systems.
The language has evolved beyond its original purpose, and now supports object-relational
database management systems. SQL has been standardized by both ANSI and ISO.

6. Functional Requirements Specification:

Stakeholders

Generally, the system under development (SuD) has five key stakeholders: Clients,

systems analysts, systems architects and developers, software testing and quality

assurance engineers, project Managers. In our system we, Group 13, will serve as

systems analysts, systems architects and developers. Also, we will be handling the

software testing and project management. Hence, our main concern will be the clients

that will interact directly with our system.

Clients in our system are divided into four groups:

• Clients who will be buying our system i.e. restaurant owners

• Users who will be interacting directly with the system and that includes all

 the actors that will be using our system i.e. Host, Bartender, Chef, Server

 and Customers (we are using the term Customers to define the guests who

 come to the restaurant to eat)

• Managers who have the ability to modify any part of the system or how

 other users interact with the system, they also use the system to generate

 reports and analyze stats i.e. restaurant Manager

• Sponsors who will benefit directly or indirectly from our system i.e.

 Advertisers (by posting ads on Customer terminals located at tables)

Actors and Goals

Initiating Actors:

Customer:

• They place a new order or add to an existing order using the computer on

 the table; the order goes straight to the kitchen and/or the bar
 (UC-#25: AddItemAtTable)

• They also can request a Server; in case they don’t want to use the
 computer on the table or if they need help with the system or want to leave
 (UC-#26: CallServer)

Chef:

• They log in and out to retrieve their specific interface (UC-#3:LogIn,
 UC-#4:LogOut)

• They also clock in and out in order to keep track of their hours
 (Will not be implemented in Demo 2)
 (UC-#1: ClockIn, UC-#2:ClockOut)

• They notify Server when an item or an order is ready and they remove it
 from the queue (UC-#22:MarkItemReady, UC-#30:MarkOrderReady)

• They can cancel an item from an order (UC-#31:CancelItem)
• They can send a message to Server (UC-#32:MessageServer)

Server:

• They clock in and out (Will not be implemented in Demo 2)

 (UC #1:ClockIn, UC-#2:ClockOut)
• They log in and out to retrieve their specific interface

 (UC-#3: LogIn, UC-#4: LogOut)
• They add/remove items to/from tab and place orders on behalf of

 Customer if Customers don’t want to use the computer at the table
 (UC-#15: AddItem, UC-#16: RemoveItem, UC-#18:PlaceOrder)

• They also close orders, collect payment and notify Busboy to clean the
 table and finally mark table as ready (UC-#20: CloseTab,
 UC-#21: MarkTableReady)

• They adjust the price of an item on the tab to reflect a discount coupon
 (Will not be implemented) (UC-#17:AdjustPrice)

• They view tab for a particular table (UC-#19:ViewTab)

Host:

• They clock in and out (Will not be implemented in Demo 2)
 (UC-#1: ClockIn, UC-#2: ClockOut)

• They log in and out to retrieve their specific interface
 (UC-#3: LogIn, UC-#4: LogOut)

• They assign default Servers to tables (UC-#29:AssignDefaultServer)
• They assign Customers to tables and have the option of assigning a

 specific Server to that table for the duration of the Customer stay
 (UC-#14: SeatCustomer)

Bartender:

• They log in and out to retrieve their specific interface (UC-#3:LogIn,
 UC-#4:LogOut)

• They clock in and out (Will not be implemented in Demo 2)
 (UC-#1: ClockIn, UC-#2: ClockOut)

• They notify Server when drinks for restaurant Customers are ready for
 pick up (UC-#30: MarkOrderReady)

• They place orders received from bar Customers (UC-#23:AddItemAtBar)
• They also close orders or update open tabs and collect payments from bar

 Customers (UC-#24: CloseTabAtBar)
• They can cancel an item from an order (UC-#31:CancelItem)
• They can send a message to Server (UC-#32:MessageServer)

Manager:

• They log in and out to retrieve their specific interface

 (UC-#3: LogIn, UC-#4:LogOut)
• They manage users and that include adding new users removing current

 users or updating current user info
 (UC-#5: AddEmployee, UC-#6: RemoveEmployee,
 UC #7: UpdateEmployee)

• They update menu items by adding new items to the menu or removing
menu items and update prices, recipe UC-#9: AddToMenu,
UC-#10:DeleteFromMenu, UC-#11:UpdateItemInMenu)

• They also access various records and statistics for the restaurant operations
 (UC-#13: ViewStats)

• They can send a message to Server (UC-#32:MessageServer)
• They update floor plan (Will not be implemented in Demo 2)

 (UC-#8: UpdateFloorPlan)
• They schedule specials (Will not be implemented in Demo 2)

 (UC-#12:ScheduleSpecial)

Participating Actors:

 Chef: Make orders based on order queue

Server: Bring food/drinks to the table when food/drinks are ready

they also respond to Customers calls when Customers call them,

they also receive messages from Chef/Bartender/Manager, and

finally they respond to Host assignment for the tables to serve.

Bartender: Make drinks based on bar Customers orders or queue

Use Cases

Some of the uses cases have been elaborated in more details. These use cases are
highlighted in light blue color differently formatted to be easily detected as they are the
most important use cases of this project.

UC-#1: ClockIn Employee clocks in by entering the desired clock-in time.
(Will not be implemented) System first requests Employee to enter authentication
 code, then it requests the desired clock-in time, and when
 received, records both desired clock-in time and the actual
 clock-in time.
 Should be considered for future implementation to

increase flexibility of clocking in by Employee
regardless of having to be logged into/out of one of the
Employee interface.

UC-#2: ClockOut Employee clocks out by entering the desired clock-out time
(Will not be implemented) Should be considered for future implementation to

increase flexibility of clocking out by Employee
regardless of having to be logged into/out of one of the
Employee interface.

UC-#3: LogIn
Related Requirements

Goal In Context Employee attempts to log into the system and open Employee specific

interface

Preconditions Connection to the database exists

Successful End Condition Employee successfully logged into the system and is provided with

Employee specific interface

Failed End Condition Employee is denied access to the system and is provided with log-in

interface

Primary Actors Employee (Host, Bartender, Server, Chef, Manager)

Secondary Actors

Trigger Employee enters Employee password into the password field of the

log-in screen at the terminal

Main Flow Step Action

1 Employee enters password and attempts to log-in.
2 System receives password from the log-in screen and retrieves

 Employee information with given password. Then it opens
appropriate Employee interface in a new window and closes
log-in screen.

Extensions Step Action

2.1 System does not find an Employee with password matching
 the provided password. System notifies Employee of failure
 to log in and resets log-in screen.

UC-#4: LogOut Employee logs out of the system.

UC-#5: AddEmployee
Related Requirements

Goal In Context Manager attempts to add new Employee to the Employee database

Preconditions Manager is logged in and Manager interface is opened on the terminal

Connection to the database exists

Successful End Condition Manager successfully adds new Employee into the Employee database

Failed End Condition Manager fails to add new Employee to the Employee database

Primary Actors Manager

Secondary Actors

Trigger Manager requests to add new Employee from the Manager interface

Main Flow Step Action

1 Manager requests to add new-Employee from the Manager
 interface.
2 System receives request from the Manager and provides

Manager with a new-Employee form.
3 Manager fills out the new-Employee form with new

Employee’s name, desired password, SSN, Wage and new
Employee job title. Manager then submits the form.

4 System checks the validity of the information entered and that
no other existing Employee has matching password. Then
system adds new Employee to the Employee database, and
closes the new-Employee form.

Extensions Step Action

4.1 System finds invalid information or another Employee in the
database with the same password. System then provides
Manager with failure by highlighting those fields of the new-
Employee form which need to be changed along with
description of why information needs to be changed.

4.2 Employee changes highlighted fields and submits the new-
Employee form.

UC-#6:RemoveEmployee Manager deletes former Employee profile. System deletes

it from the database.

UC-#7: UpdateEmployee
Related Requirements

Goal In Context Manager attempts to update existing Employee information in the

Employee database

Preconditions Manager is logged in and Manager interface is opened on the terminal

Connection to the database exists

Successful End Condition Manager successfully updates existing Employee information in the

Employee database

Failed End Condition Manager does not update existing Employee information in the

Employee database

Primary Actors Manager

Secondary Actors

Trigger Manager requests to update existing Employee information from the

Manager interface

Main Flow Step Action

1 Manager requests to update existing Employee information
from the Manager interface.

2 System receives request from the Manager and provides
Manager with an existing Employee information form.

3 Manager selects particular Employee from the Employee list
and fills out the form with the new information. Manager then
submits the form.

4 System checks the validity of the information entered and that
no other existing Employee has matching password if
password field was modified. Then system updates Employee
database, and closes the existing Employee information form.

Extensions Step Action

4.1 System finds another Employee in the database with the same
password. System then requests a valid Employee password.

4.1 Manager changes password and submits the new Employee
information form.

UC-#8: UpdateFloorPlan Manager updates the floor plan through a graphical
 (Will not be implemented) interface by adding or removing tables, as well as changing

table position on the floor plan.
 Will not be implemented due to complexity of

implementation. Should be considered for future
implementation to decrease client’s dependence on
product supportability and increase product flexibility
by allowing client to change floor plan on demand.

UC-#9: AddToMenu Manager adds an item to the menu by entering name of the
item, recipe, preparation time, price etc. into the form.

UC-#10: DeleteFromMenu Manager deletes an item from the menu.

UC-#11: UpdateItemInMenu Manager selects an item from the menu and updates item's

name, recipe, preparation time, price etc.

UC-#12: ScheduleSpecial Manager schedules special price for an item, by specifying
(Will not be implemented) start time, end time, day of the week, recurrence and

special price. Should be implemented in the future to
give Manager an ability to schedule price-change events
on demand.

UC-#13: ViewStats Manager views statistics for the restaurant. time, end time,

day of the week, recurrence and special price.

UC-#14: SeatCustomer
Related Requirements

Goal In Context Host attempts to place Customer at a table

Preconditions Host is logged in and Host interface is opened on the terminal

Successful End Condition Host successfully seats/assigns Customer to a table

Failed End Condition Host fails to seat/assign Customer to a table

Primary Actors Host

Secondary Actors Server

Trigger Host selects an empty table from the floor plan on the Host interface

Main Flow Step Action
 1 Host selects an empty table from the floor plan on the Host
 interface.
 2 System responds by presenting seat-Customer form requesting
 Customer party size and providing Host with an option to
 change Server from the default Server to any other logged-in
 Server.
 3 Host enters the size of Customer party, and submits the
 seat-Customer form.

4 System changes the status of the table to occupied, creates a
 new blank order and records it in the Active Orders database,
 System then signals the assigned Server. Then it closes
 seat-Customer form.

Extensions Step Branching Action
1.1 All tables are either occupied or being cleaned. Server
 requests Customer to wait.
2.1 Host chooses to change Server.
2.2 Host enter Server ID to change. Proceed to step 3

UC-#15: AddItem
Related Requirements

Goal In Context Server attempts to add an item to the tab from Server's terminal

Preconditions Customer has been placed at the table and a tab for the table exists

Successful End Condition An item has been added to the tab, Chef and/or Bartender have been notified

Failed End Condition No items are added to the tab

Primary Actors Server

Secondary Actors Chef, Bartender

Trigger Server selects to add item to an open tab on Server's terminal

Main Flow Step Action
 1 Server selects to add item to an open tab on Server's terminal.
 2 System responds by presenting Customer with the menu.
 3 Server selects the desired menu item.
 4 System responds by requesting the quantity of item desired.
 5 Server responds by entering the quantity desired.
 6 System responds by providing Server with options to attach a special
 comment, to proceed or cancel.
 7 Server selects to proceed with the adding of an item to the tab.
 8 System adds the item(s) to the tab.
 9 System shows Server current item(s) in tab, and provides Server with
 options to select adding another item, or updating an existing item(s),
 or to place an order.
 10 Server places the order.
 11 System separates drinks from food and sends food order to the Chef's
 queue and drink order to the Bartender's queue. Then system sends an
 update to the active order database with the newly added items.

Extensions Step Branching Action
 6.1.1 Server selects to attach a special comment to the selected item. Then
 Server chooses to proceed and continues with Step 8.
 6.2.1 Server selects to cancel addition of the selected item.
 6.2.2 System returns Server to the opened tab for the selected table. Proceed
 with Step 1.
 10.1.1 Server selects to add another item to the tab. System goes back to
 step 2.
 10.2.1 Server selects an item and chooses to update it.
 10.2.2 System responds by providing Server with options to attach a special
 comment, to change quantity of the selected item or to remove selected
 item.
 10.2.3 Server selects to remove item.
 10.2.4 System removes item from tab and returns Server to the opened tab for
 the selected table. Proceed with Step 9.
 10.2.3.1 Server selects to change quantity of the selected item.
 10.2.3.2 System changes the quantity of the selected item. Proceed with step 9.

UC-#16:RemoveItem Server removes an undesired item from the table's tab
before placing the order. If Server removes an undesired
item after order has been placed, Manager enters
authorization code and completes the removal of item from
the tab.

UC-#17:AdjustPrice Server adjusts the price of an item on the tab to reflect a
(Will not be implemented) discount coupon.

Should be implemented in the future to give Server
more flexibility when interacting with the Customer,
and to give Manager the ability to attract more
Customers through the use of coupons.

UC-#18 PlaceOrder
Related Requirements

Goal In Context Server places order for a specific table

Preconditions Server has added items to tab of a certain table

Successful End Condition Order is placed, and Chef/Bartender has been notified

Failed End Condition Order is not placed and/or Chef/Bartender has been notified

Primary Actors Server

Secondary Actors Chef, Bartender

Trigger Server requests to place order through the Server interface

Main Flow Step Action
 1 Server requests to place order through the Server interface.
 2 System adds order to the table tab in active order database.
 3 System notifies Server order is placed.

Extensions

UC-#19:ViewTab Server views tab for a particular table.

UC-#20 CloseTab
Related Requirements

Goal In Context Server closes a tab of a certain table

Preconditions Customer called Server and is ready to leave

Successful End Condition Tab is collected, stored in inactive_order database, table tab is cleared

Failed End Condition Tab is not stored in the database and/or table tab is not cleared

Primary Actors Customer, Server

Secondary Actors

Trigger Customer asks Server for check

Main Flow Step Action
 1 Customer asks Server for check.
 2 Server selects table through the Server interface.
 3 System responds by presenting active tables.
 4 Server selects close tab for the desired table.
 5 System responds by presenting total amount due
 6 Server collects payment from Customer.
 7 Server selects confirm.

8 System prints bill, and moves active tab from active_order database
into the inactive_order database.

Extensions

UC-#21 MarkTableReady
Related Requirements

Goal In Context Server marks a certain table ready

Preconditions Customer left and Busboy cleaned the table

Successful End Condition Table is marked ready

Failed End Condition Table is not marked ready

Primary Actors Server

Secondary Actors

Trigger Server

Main Flow Step Action
 1 Server selects table through the Server interface.
 2 System responds by presenting active tables.
 3 Server selects mark table ready for the desired table.
 4 System marks table ready, and updates tabletops database.

Extensions

UC-#22: MarkItemReady Chef announces item as ready to be served. This use case
(Modified) will be used at Chef’s discretion to inform Server when

items such as appetizers are ready.

UC-#22: MarkItemReady
Related Requirements

Goal In Context Chef attempts to inform Server of completion of preparation

of selected item

Preconditions Item has been prepared; connection to the database exists

Successful End Condition Server is informed and item is marked as prepared to be

delivered to Customer by Server

Failed End Condition Item is not marked as prepared in the Chef’s order queue and

Server is not informed

Primary Actors Chef

Secondary Actors Server, Timer

Trigger Chef selects an Item from the current order tab and marks that

Item ready

Main Flow Step Action

1 Chef selects an Item from the current order tab and marks that
Item ready.

2 System notifies the Server and highlights Item in Chef’s
interface.

 3 System sets Timer.
 4 Server delivers item(s), and mark item(s) delivered.

 5 System resets Timer.

Extensions Step Branching Action

4.1 Server doesn't deliver item, or forgets to mark item(s) ready.
4.2 Timer reaches limited time.
4.3 Timer triggers System.
4.4 System goes back to step 2.

UC-#23: AddItemAtBar Bartender places an item on a new or existing tab. Multiple
(Modified) tabs are showing on the Bartender's interface, one per

Customer.

UC-#24 CloseTabAtBar
Related Requirements

Goal In Context Bartender closes a certain tab for a bar customer

Preconditions Customer is ready to leave

Successful End Condition Tab is collected, stored in inactive_order database, tab is cleared

Failed End Condition Tab is not stored in the database and/or tab is not cleared

Primary Actors Customer, Bartender

Secondary Actors

Trigger Customer asks Bartender for check

Main Flow Step Action
 1 Customer asks Bartender for check.
 2 Bartender selects tab through the Bartender interface.
 3 System responds by presenting list of active Customers.
 4 Bartender selects desired Customer
 5 System responds by presenting total amount due
 6 Bartender collects payment from Customer.
 7 Bartender selects confirm through the Bartender interface.

8 System prints bill, and moves active tab from active_order database
into the inactive_order database.

Extension

UC-#25 AddItemAtTable
Related Requirements
Goal In Context Customer attempts to add an item to the tab from Customer terminal

located at table

Preconditions Customer has been placed at the table and a new tab for the table is

open

Successful End Condition An item has been added to the tab, Chef and/or Bartender and Server
have been notified

Failed End Condition No items are added to the tab

Primary Actors Customer

Secondary Actors Chef, Bartender, Server

Trigger Customer requests to add an item to the tab from the Customer terminal

Main Flow Step Action
 1 Customer requests to add an item to the tab from the Customer
terminal.
 2 System responds by presenting Customer with the menu.
 3 Customer selects the desired menu item.
 4 System responds by requesting the quantity of item desired.
 5 Customer responds by entering the quantity desired.
 6 System responds by providing Customer with options to attach a

special comment, to proceed or cancel.
 7 Customer selects to proceed with the adding of an item to the tab.
 8 System adds the item to the tab.
 9 System shows Customer current item(s) in order, and asks Customer to

select adding another item, or updating existing item(s), or to place an
order.

 10 Customer places an order.
 11 System adds order to the table tab in active order database.

Extensions Step Branching Action
 6.1.1 Customer selects to attach a special comment to the selected item.

Proceed with Step 6.
 6.2.1 Customer selects to cancel addition of the selected item.
 6.2.2 System returns Server to the opened tab for the selected table. Proceed

with Step 1.
 10.1.1 Customer selects to add another item to the tab. System goes back to

step 2.
 10.2.1 Customer selects an item and chooses to update it.
 10.2.2 System responds by providing Customer with options to attach a

special comment, to change quantity of the selected item or to remove
selected item.

 10.2.3 Customer selects to update item.
 10.2.4 System updates item in the tab and returns Customer to the opened tab

for the selected table. Proceed with Step 9.

UC-#26 CallServer
Related Requirements

Goal In Context Customer attempts to call a Server because he/she doesn’t want to use

the system, or needs assistance

Preconditions Customer has been placed at the table

Successful End Condition Server is notified

Failed End Condition Server is not notified

Primary Actors Customer

Secondary Actors Server

Trigger Customer requests to call Server from the Customer terminal

Main Flow Step Action
 1 Customer requests to call Server from the Customer terminal.
 2 System notifies the assigned Server.
 3 System informs Customer that Server has been notified.

Extensions

UC-#27: ManageTabAccounts Manager adds, removes or updates individual
(Will not be implemented) Customer tab accounts. Upon Customer's request a

personal tab account can be maintained by the
restaurant. Tab account will accumulate item
orders, over a period of time specified by the
Manager, and upon Customer's preferred payment
type, cash or credit card, he/she will be periodically
charged. As payment is received, tab is cleared.
This use case will not be implemented due to
additional complexity and time restrictions. It
should be implemented in the future to eliminate
paperwork required to keep track of tab
accounts.

UC-#28: TransferTab Server/Bartender transfers an open tab onto an existing
(Will not be implemented) Customer tab account given proper identification of the

Customer.
Should be implemented with UC-#27 to transfer active
orders onto Customer’s Tab at a touch of a button.

UC-#29: AssignDefaultServer Host assigns a default Server to a selected table.
(New Use Case)

UC-#30: MarkOrderReady Chef/Bartender marks order ready, Server is notified to
(New Use Case) pick up the food/drink(s), timer is set to make sure the food

is picked up.

UC-#31: CancelItem Chef/Bartender cancels item, Server is notified with the
(New Use Case) canceled item(s) and order.

UC-#32: MessageServer Manager/Chef/Bartender sends a message to Server for any
(New Use Case) other reason.

Refresh Refresh is an internal class that continually updates the
(New) a given PC based GUI (Chef/Bartender/Host) from the

database to show any changes that occurred to the database
since the last refresh. (Manager/Customer) GUI’s are not
going to have this function since they are event driven
cases. For the Server, this function will not be implemented
for the GUI, but will be implemented for a Communicator
class that will continually checks the database for any
changes and sends the changes to the BlackBerry through
HTTP.

Use Case Diagram:

 In the above use case diagram, since every employee who interacts with the

system will be provided with individual terminal, UC3 and UC4 are only invoked once

when employee logs into/out of his/her terminal. Once employee logs in he/she remains

logged in until he/she logs out. Use of database actor has been removed from the case

diagram to prevent clattering. Most of the use cases will be accessing database as that is

where all restaurant operation related data is recorded and stored.

 UC27 can be further broken down into use cases such as create new customer tab

account, remove customer tab account, and update customer tab account. This is avoided

to prevent cluttering.

To create a customer tab account, customer feels out a form on paper with his name,

address, credit-card information and submits it to the manager through other employees.

Manager examines the data, approves the creation of new tab account and then enters it

into the system.

 When manager creates a server-employee account, he/she specifies the section of

the floor to which that server will be automatically assigned when server logs into the

system on his/her terminal. Host has the liberty of reassigning servers to tables as he/she

sees fit.

System Sequence Diagrams:

LogIn Sequence Diagram

AddEmployee Sequence Diagram

Manager System

addEmployee

newEmployeeForm

employeeInfo

validateEmployeeInfo

acknowledgement
addEmployee

UpdateEmployee Sequence Diagram

SeatCustomer Sequence Diagram

AddItem Sequence Diagram

PlaceOrder Sequence Diagram

CloseTab Sequence Diagram

MarkTableReady Sequence Diagram

MarkItemReady Sequence Diagram

Chef System Server Timer

markItemReady

notifyItemReady

setTimer

return<when timer expires>

markItemDelivered

resetTimer

acknowledgement

CloseTabAtBar Sequence Diagram

AddItemAtTable Sequence Diagram

Customer System Bartender Chef Server

addItemAtTable

presentMenu

selectItem

quantity

requestQuantity

addItemToTab

additionalOptions

response

repeat

drinkOrder

dishOrder

acknowledgement

acknowledgement

specialComments

response

updateDatabase

CallServer Sequence Diagram

7. Nonfunctional Requirements:

Nonfunctional requirements describe aspects of the system that are not directly related to

the functional behavior of the system, and they are part of the FURPS+ model.

Nonfunctional requirements consist of four categories: Usability, Reliability,

Performance, and Supportability.

1. Usability

OpenBar restaurant POS system uses touch-screen computers stationed at different places

of a restaurant, replacing traditional pen-paper method of order processing and

communication. The interface, which changes according to different users logged in, is

fairly easy to understand, thus making the software easy to use. A maximum of one hour

training should guarantee clients operating the system proficiently. In case of questions

regarding the software, online manual is also available on our website.

2. Reliability

OpenBar system is based on a real-time server, and has minimal requirement on CPU and

memory usages (1.2GHz Pentium III and 256M RAM or above), therefore the system

will not go down easily. All terminals are connected to the central server, Intranet-based,

which means no Internet is required, also preventing possible virus. In addition, the timer

in the system forces automatic log-out after a period of inactivity, avoid unauthorized

operations.

3. Performance

Performance includes response time, throughput, availability, and accuracy.

Response time: as stated above, all terminals are connected to the central server using

Ethernet cables or bluetooth, with 10/100M connection, the system should response to

user inputs almost instantly.

Throughput: a medium performance computer as the server will allow 20 users accessing

the database simultaneously, and be able to handle a busy night.

Availability: this software requires no Internet, which means the system is on whenever

the server is on.

Accuracy: almost every operation involves a confirmation check, preventing inaccuracy.

4. Supportability

Supportability includes adaptability/portability and maintainability.

Adaptability/portability: OpenBar POS system is written in Java and SQL, therefore it

works in any hardware or software environments that are Java and SQL-friendly.

Maintainability: for basic maintainability, restaurant owners can log in as

manager/administrator and modify items, prices, and floor layout etc. Most problems can

be easily fixed by rebooting the system, if they do occur. Software functionality-wise,

technical support contact information is available on our website.

5. Implementation

OpenBar POS system is written in Java language and uses SQL server. While

implementation of the system can be achieved by basic notepad coding, we suggest using

a Java editing program—Netbeans IDE 5.5. Netbeans is updated periodically with the

JDK (Java Development Kit) itself to fit into many different hardware platforms,

including Windows, Mac OS, Linux, and Solaris.

6. Interface

Considering most restaurants using OpenBar POS system will most likely run the system

on relatively new computers, legacy systems and interchange formats should not cause

any problem to clients. In case such problem does occur, JDK updates should solve it.

7. Operation

OpenBar POS system provides all everyday restaurant operations you will ever need,

ranging from basic order taking, to special event setup, to floor plan change.

Administrator/manager can set accessing privilege of each user, therefore preventing

unauthorized operation.

8. Packaging

Installation of OpenBar POS system requires JRE (Java Runtime Environment), SQL

server (mySQL), and of course OpenBar itself. After purchasing, an easy installation CD

including all the required softwares will be mailed to customers, in addition, on-site

technician help will be provided upon request.

9. Legal

While there are many similar POS systems available on the market,

OpenBar is designed and written solely by our team. A license will be

obtained when the system is finalized.

8. Domain Analysis:

Domain Model:

System Operation Contracts:

Operation Add Item to Order
Preconditions Customer has been placed at the table and a new tab for the table is open

Table ID: known
Server ID: known
Item ID: known

Post conditions An item has been added to the order, chef and/or bartender and server
 have been notified

Item IDs: updated with Item ID
Server/Chef/Bartender notified

Operation Assign Table
Preconditions Host is logged into the system.
Post conditions Customer has been assigned to selected table, a server has been
 assigned to the table, and a new tab is opened

for the table
Table ID: assigned
Server ID: assigned
Customer Quantity: assigned
Status = occupied

Operation Place Order
Preconditions Server is logged into the system

Table ID: corresponds to table in which order is being
 taken
Server ID: corresponds to server that is placing the order

Post conditions Order has been placed by a server and submitted.
Item IDs: contain items being ordered
Time Placed: contains current timestamp

Operation Chef Notifies Server
Preconditions Server is logged into the system

Table ID: corresponds to table in which order is being

 taken to
Server ID: corresponds to server that is being notified
Order ID: corresponds to order that is ready

Post conditions Server has been notified that order is ready and what items are ready.
Time Placed: contains current timestamp

Operation Server Closes Order
Preconditions Server is logged into the system. Customer is ready to close their tab.

Table ID: corresponds to table in which order is being
 closed
Server ID: corresponds to server that is placing the order
Order ID: corresponding order number
Status = Active

Post conditions Order has been closed by the server.
Status = Inactive
Server has received payment from Customer.

Operation Server Clears Table
Preconditions Customers have closed tab with Server and have left the table.
 Server has cleaned the table.

Table ID: corresponds to table being cleared
Server ID: corresponds to server that is clearing the table
Status = Active

Post conditions Table has been marked as inactive and is ready for more Customers
 to be seated by the Host.

Status = Inactive

Operation Bartender Closes Order
Preconditions Bartender is logged into the system. Customer is ready to close their
 tab.

Table ID: corresponds to table in which order is being
 taken
Server ID: corresponds to bartender that is placing the
 order
Order ID: corresponding order number
Status = Active

Post conditions Order has been closed by the bartender.
Status = Inactive
Server has received payment from Customer.

9. Interaction Diagrams
LogIn
This case is straight forward; only the employee logging in interacts with

DatabaseController and it follows the Expert Doer Principle : only the employee and the

DatabaseController needs to know and the controller signs the employee in to the

database. This is a direct implementation of a Publisher-Subscriber design pattern

where the GUIController is a publisher and the DatabaseController is the subscriber.

LogInGUI :GUI :GUIController :DatabaseController Database

Employee Logs In

enterPassword(password)

isExist(ID: int)

alt (isExist == true)
return(ID)

retrieveEmployee(ID)

return(e: Employee)

e

checkType(e)

dispInterface()

alt (isExist == false)
return(false)

dispInvalid()

UpdateEmployee
This case is straight forward where the manager using his interface access the

EmployeeDatabase and updates it; it follows the Expert Doer Principle: Since only the

manager needs to know so he does the job. This is a direct implementation of a

Publisher-Subscriber design pattern where the GUIController is a publisher and the

DatabaseController is the subscriber.

SeatCustomer

This case main role is seating the customer and updating the table and also notifying the

assigned server based on a floor plan that keeps getting updated by the GUI class

Refresh. The first role is assigned to the Host what follows the Expert Doer Principle:

since the host need to know who is coming in and out. Once the table gets updated, the

Refresh class that we implemented would update the Communicator with the new

modification, then the Communicator notifies the assigned Server. The workload is

balanced between the all the interacting interfaces, and that follows the High Cohesion

Principle. This is a direct implementation of a Publisher-Subscriber design pattern

where the GUIController is a publisher and the DatabaseController is the subscriber.

PlaceOrder
This case main role is to place an order that is already been selected and again we find
low coupling: where ServerGUI reaches the DatabaseController Through the
Communicator. Note that Communicator is not shown in the diagram because the
Communicator is a fixed controller that serves as a Servlet for the Server interface, so
there is no need to mention in it everytime. We also note that the design pattern
implemented for all Server interface is the Command design pattern: for sending the data
to the database. The communicator connection to the database is considered a Publisher-
Subscriber pattern where the Communicator is the publisher and the DatabaseController
is the subscriber.

ServerGUI :GUI :OrderController :DatabaseController Database

Server Places Order

placeOrder(o: Order)

storeActive(o: Order, tableID: int)

store(o, tableID)

orderComplete()

CloseTab
In this case we have two main roles: collecting payment, saving the order to the inactive

database. After being called by the customer the server closes the tab, collects the

payment, notifies the Busboy to clean the table and returns the printed receipt for the

Customer. Second role is activated when the Server confirms closing the order the

System saves a copy of the tab to the inactive orderd databases, then clears the tab for the

next customer to come. This design follows the Expert Doer Principle since only the

server needs to know about the tab when collecting the payment. This design also follows

the High Cohesion Principle where the workload is balanced among the objects. For the

design Pattern again we find the Command pattern is implemented for the Server

interface: for sending the data to the database. Also, The communicator connection to the

database is considered a Publisher-Subscriber pattern where the Communicator is the

publisher and the DatabaseController is the subscriber.

MarkTableReady
Another Straight forward case that completes the closing order process, and it was split
because we wanted to take care of the case, where the Customer pays but still sits there.
So when Customer leaves and Busboy cleans the table, the Server marks the table ready,
and the ServerGUI sends a request to the DatabaseController to change the status of the
table. For the design Pattern again we find the Command pattern is implemented for the
Server interface: for sending the data to the database. Also, The communicator
connection to the database is considered a Publisher-Subscriber pattern where the
Communicator is the publisher and the DatabaseController is the subscriber

ServerGUI :GUI :DatabaseController Database

Server Marks Table Ready

showTableList()

Server Selects Table

markTableReady(tableID: int)

changeTableStatus(tableID)

MarkItemReady
This case is very simple where the chef marks an item of the tab (Appetizer for example)

ready as soon as they finish it to minimize turn around time. The item is marked ready in

the database and upon the next refresh the Communicator sends a notification to the

Server to come pick up the item. This design follows the Expert Doer Principle where

the chef knows about the prepared item then stores it in the database and our database

handles the communiation. This is Indirect communication and that follows the

Publisher-Subscriber design pattern. And based on this case along with UC-25:

AddItemAtTable we eliminated the role of the server to only serving the food when its

ready and this way the communication is between customer straight to the kitchen and

that follows the Low Coupling Principle. The workload is balanced among all the actors

interacting with our system (Customer, Server, Chef and Bartender) where each of them

only gets to interact with the system only when they have to. So the total design follows

the three principles (Expert Doer Principle, Low Coupling Principle and High

Cohesion Principle) very

closely.

CloseTabAtBar

CloseTabAtBar is another Use Case that goes along with our Publisher-Subscriber
design pattern: where the BartenderGUI is the Publisher and the DatabaseController, we
need to note that here we have a TabController and this controller handles getting the
total amount due for the active tab, and when the tab is cleared the controller takes care of
storing a copy at the inactive order database before destroying the item. This design
satisfies the (Expert Doer Principle, Low Coupling Principle and High Cohesion
Principle) very closely.

BartenderGUI :GUI :DatabaseController Database :TabController Printer

Bartender Selects Tab

retrieveTabList()

retrieveTabList()

return(tl: Tab[])

return(tl)

showTotal(on: OrderName)

Bartender Selects Customer

retrieveTab(on)

retrieveTab(on)

return(t: Tab)

return(t)

addPriceToTotal(price: int)

loop (for each item in tab)

return(total: int)

Bartender Confirms "Paid"

closeTab(t)

printTab(t)

moveToInactive(t)

moveToInactive(t)

AddItemAtTable
In this case we have two main roles which are placing/modifying order and then storing

them in the active database order for the selected table in order to get delivered to the

Chef and/or Bartender next time their GUI gets refreshed. The customer performs the

first task through the interface provided and the interface interacts directly with the menu

stored at the database the Customer has the option of adding multiple item updating

number of items(zero for removing the item from the order. Then, once the order has

been placed the CustomerGUI stores the order in the active database for this table using

the Database Controller. This design follows the Expert Doer Principle and Low

Coupling Principle since only the users need to perform the task are the ones doing it

(Customer and Menu), (Order and Database) or (Database and Chef/Bartender). This

design also follows the High Cohesion Principle where the workload is balanced among

all the objects (Customer, Database). Also we have the system taking care of dividing the

order into food and/or drinks automatically. This is an Indirect communication and that

follows the Publisher-Subscriber design pattern.

CallServer
This case is fairly easy and it is extremely important as it facilitates for the Customer to

Call a Server whenever needed. The CustomerGUI directly sends a message to the

DatabaseController. The message is stored with the tableID and the assigned server for

this table. The rest of the call gets handled by the Refresh function for the Communicator,

which retrieves the message and sends it over HTTP to the assigned Server; it follows the

Expert Doer Principle. Only the communicator needs to know so it does the job. This is

design is devided into 2 parts the CustomerGUI to the DatabaseController is an Indirect

communication that follows the Publisher-Subscriber design pattern, while the rest of

the scenario(Not listed in the case Diagram but will be implemented in the design)

follows the Command design pattern.

10. Class Diagram and Interface Specification:

Class Diagram:

Data Types and Operation

+showFloor() : bool
+showServer(in server : ServerGUI) : bool
+seatCustomer(in numberOfCustomers : int, in tableID : int, in server : ServerGUI) : bool
+assignServer(in server : ServerGUI, in tableID : int) : bool

-servers : ServerGUI
HostGUI

+showServer() : bool
+addItem(in item : Item, in tab : Tab) : bool
+removeItem(in item : Item, in tab : Tab) : bool
+adjustPrice(in item : Item, in price : double) : bool
+placeOrder(in table : Table) : bool
+viewTab(in tab : Tab) : bool
+closeTab(in tab : Tab) : bool
+markTableReady(in tableID : int) : bool
+transferTab(in orderID : int, in serverOrBartender : Employee) : bool

-tables : Table
-tabs : Tab

ServerGUI

+showChef() : bool
+markOrderReady(in tab : Tab) : bool

-orderQueue : Tab
ChefGUI

+showBartender() : bool
+markOrderReady(in tab : Tab) : bool
+addItemAtBar(in item : Item, in tab : Tab) : bool
+closeTabAtBar(in tabID : int) : bool
+transferTab(in tabID : int, in serverOrBartender : Employee) : bool

-orderQueue : Tab
BartenderGUI

+showOrder() : bool

-ID : int
-tableID : int
-orderName : int
-items : Item
-subtotal : double
-orderTimer : Timer
-open : bool

Tab

+showItem() : bool

-ID : int
-name : string
-recipe : string
-price : double
-type : int
-status : int

Item

+showEmployee(in employee : Employee) : bool
+addEmployee(in newEmployee : Employee) : bool
+removeEmployee(in employee : Employee) : bool
+updateEmployee(in employee : Employee) : bool
+updateFloorPlan(in floor : Floor) : bool
+addToMenu(in newItem : Item) : bool
+deleteFromMenu(in item : Item) : bool
+updateItemInMenu(in item : Item) : bool
+scheduleSpecial(in item : Item, in price : double) : bool
+viewStats() : bool
+manageTabAccounts(in tab : Tab) : bool

-employees : Employee
ManagerGUI

+showEmployee() : bool
+clockIn(in ID : int, in password : int) : bool
+clockOut() : bool
+logIn(in ID : int, in password : int) : bool
+logOut() : bool

-ID : int
-firstName : string
-lastName : string
-wage : double
-password : int
-permission : int

Employee

SpecificGUI

Database
1

*

+showTable() : bool

-ID : int
-server : ServerGUI
-customers
-status : int
-tableTimer : Timer

Table

+showTime() : bool
-timeStart : int

Timer

+showFloor() : bool
-tables : Table

Floor

«uses»

«uses»

1

*

1

*

1

*

1
*

1
1

1 *

Links with all other classes.

1

*
1*

General LogIn interface for Employees.
SpecificGUI's as in ManagerGUI, HostGUI,
ServerGUI, BartenderGUI, ChefGUI, and
CustomerGUI.

GeneralGUI

1 *

+callServer(in tableID : int, in serverID : int) : bool
+notifyServerTable(in serverID : int, in tableID : int, in guestNumber : int) : bool
+notifyServerOrder(in serverID : int, in tableID : int, in order : Tab) : bool
+notifyChef(in serverID : int, in tableID : int, in order : Tab) : bool
+notifyBartender(in serverID : int, in tableID : int, in order : Tab) : bool

Communicator

<<uses>>

1

1

<<uses>>

+Refresh() : bool

-t_num : int
-my_time : Timer

Refresh

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Object Constraint Language Contracts

+showFloor() : bool
+showServer(in server : ServerGUI) : bool { pre: server exists }
+seatCustomer(in numberOfCustomers : int, in tableID : int, in server : ServerGUI) : bool { pre: table.status == ready }
+assignServer(in server : ServerGUI, in tableID : int) : bool

-servers : ServerGUI
HostGUI

+showServer() : bool
+addItem(in item : Item, in tab : Tab) : bool { pre: tab exists }
+removeItem(in item : Item, in tab : Tab) : bool { pre: item exists in order }
+adjustPrice(in item : Item, in price : double) : bool { pre: item exists in tab }
+placeOrder(in table : Table) : bool { table.status==seated }
+viewTab(in tab : Tab) : bool { pre: tab exists }
+closeTab(in tab : Tab) : bool { pre: tab.open==true }
+markTableReady(in tableID : int) : bool
+transferTab(in orderID : int, in serverOrBartender) : bool { tab.open==true }

-tables : Table
-tabs : Tab

ServerGUI

+showBartender() : bool
+markOrderReady(in tab : Tab) : bool
+addItemAtBar(in item : Item, in tab : Tab) : bool { table.open==true }
+closeTabAtBar(in tabID : int) : bool { tab.open==true }
+transferTab(in tabID : int, in serverOrBartender : Employee) : bool { tab.open==true }

-orderQueue : Tab
BartenderGUI

+showOrder() : bool

-ID : int
-tableID : int
-orderName : string
-items : Item
-subtotal : double
-orderTimer : Timer
-open : bool

Tab

+showItem() : bool

-ID : int
-name : string
-recipe : string
-price : double
-type : int
-status : int

Item

1

*

+showTable() : bool
+addItemAtTable(in item : Item) : bool
+callServer() : bool

-ID : int
-server : ServerGUI
-status : int
-tableTimer : Timer

Table

+showTime() : bool
-timeStart : int

Timer

+showFloor() : bool
+updateTables() : bool

-tables : Table
Floor

«uses»

1

*

1*

1

*

1

*

1

1

1

*

1

*1

1
1

*

+showChef() : bool
+markOrderReady(in tab : Tab) : bool

-orderQueue : Tab
ChefGUI

«uses» +showEmployee() : bool
+clockIn(in ID : int, in password : int) : bool { !isClockedIn() }
+clockOut() : bool { isClockedIn() }
+logIn(in ID : int, in password : int) : bool { !isLoggedIn() }
+logOut() : bool { isLoggedIn() }

-ID : int { ID>=0 }
-firstName : string
-lastName : string
-wage : double { wage>=MIN_WAGE }
-password : int { password>=0 }
-permission : int

Employee

+showEmployee(in employee : Employee) : bool { exists(employee.ID) }
+addEmployee(in newEmployee : Employee) : bool { !exists(newEmployee.ID) }
+removeEmployee(in employee : Employee) : bool { exists(employee) }
+updateEmployee(in employee : Employee) : bool { exists(employee.ID) }
+updateFloorPlan(in floor : Floor) : bool
+addToMenu(in newItem : Item) : bool { !exists(newItem) }
+deleteFromMenu(in item : Item) : bool { exists(item) }
+updateItemInMenu(in item : Item) : bool { exists(item) }
+scheduleSpecial(in item : Item, in price : double) : bool { exists(item) & price>=0 }
+viewStats() : bool
+manageTabAccounts(in tab : Tab) : bool

-employees : Employee
ManagerGUI

+callServer(in tableID : int, in serverID : int) : bool
+notifyServerTable(in serverID : int, in tableID : int, in guestNumber : int) : bool
+notifyServerOrder(in serverID : int, in tableID : int, in order : Tab) : bool
+notifyChef(in serverID : int, in tableID : int, in order : Tab) : bool
+notifyBartender(in serverID : int, in tableID : int, in order : Tab) : bool

Communicator

<<uses>>

SpecificGUIDatabase

Links with all other classes.

General LogIn interface for Employees.
SpecificGUI's as in ManagerGUI, HostGUI,
ServerGUI, BartenderGUI, ChefGUI, and
CustomerGUI.

GeneralGUI

1 *

<<uses>>

+Refresh() : bool

-t_num : int
-my_time : Timer

Refresh

<<uses>> <<uses>>

<<uses>>

<<uses>>

Design Principles

Since our system is a Four-tier architectural style we tried in our design to enforce the

low coupling principle, and we do that by having our data stored in a database on the

server, but the user interfaces have no direct communication with the database, instead

they communicate with a databaseController, this provides low coupling because it sets

the database implementation free (when changing the way we implement that database,

we only need to change the databaseController, and all our interfaces remain unchanged)

A special case of our interface is the Server interface since this interface needs to

communicate with the database and also with the other interfaces we implemented a

Communicator, this Communicator functions to provide an interface to the system that

will communicate with the databaseCommunicator, and when any of the other interfaces

need to communicate with the Server they store a message on the database, then the

Communicator accessing the databaseCommunicator extracts these messages and then

sends them to the specified Server over HTTP. This design provides low coupling and

high cohesion at the same time because each subsystem or interface has many objects

that depend only on each other (high cohesion) and at the same time our system provides

low coupling, even though the Server needs to interact with other interfaces low coupling

is maintained by using the Communicator. Also our design follows the Expert Doer

Principle by making sure only the user interface that needs to know about certain

information is the only one that accesses the database to get this information.

For the Design Patterns we implemented couple of design patterns for different

scenarios. For example in our Server interface we designed our classes to be completely

reusable and also they are very independent, and all you need is to instantiate new

instances of classes for your objects for them to inherit any of the main classes or

methods, this follows the Publisher-Subscriber pattern. The Publisher-Subscriber

pattern is also found in our design where it provides indirect communication between

different users. Another pattern that is used is the Command pattern in operating across

the Internet (the way the BlackBerry(Server interface) communicates with the database.

Since it is difficult to employ remote method invocation (RMI) here, instead, the call is

made from the BlackBerry by pointing the browser to the file containing the servlet. The

servlet then calls its service(HttpServletRequest, HttpServletResponse) method. The

object HttpServletRequest includes all the information that a method invocation requires,

such as argument values, obtained from the “environment” variables at standardized

global locations. The object HttpServletResponse carries the result of invoking service().

This technique embodies the basic idea of the Command design pattern.

11. System Architecture and System Design:

Architectural Styles

The Four-tier Architecture will be used in the design of the system. In general, N-

tier architecture divides computer hardware and software resources into multiple

logical layers, where N is any natural number. Because each layer can be dealt

with independently of other layers, the result is increased flexibility in

developing, managing, and deploying a system. Developers only have to modify

or add specific layers rather than disturb the entire system if technologies change,

use scales up, or problems occur. This modularized architecture will also assist in

dividing the workload amongst team members.

Our system will utilize this architecture as follows:

Presentation Client

Presentation Server

Application Logic

Storage

GUI

Java Program

Control

Database

Four-tier Architecture Style (UML Class Diagram)

Identifying Subsystems:

Subsystem Identification is to keep functionally related objects together. First

assign the participating objects that have been identified in each use case to the

subsystems. Then create a new subsystem to accommodate them to the subsystem

that creates these objects. (See next page for UML diagram)

ServerSubsystem ManagerSubsystem

HostSubsystem

LogIn SeatCustomer

LogOut

BartenderSubsystem

ChefSubsystem

MarkItemReady

CustomerSubsystem

AddItemAtTable

CallServer

LogIn

LogOut

AddItemAtBar

CloseTabAtBarLogIn

LogOut

RemoveItem

PlaceOrder

ViewTabAddItem

LogOut

LogIn

MarkOrderReady

MarkTableReady CloseTab

UpdateEmployee

RemoveEmployee

AddEmployee

LogOut

LogIn

AddToMenu

DeleteFromMenu

UpdateItemInMenu

ViewStats

AssignDefaultServer

MarkOrderReady

CancelItem

CancelItem

MessageServer

MessageServer

MessageServer

 Subsystems Analysis to match all use cases

Mapping Subsystems to Hardware

 The system will be running on multiple computers to segment the hardware into its

separate subsystems and to provide access to all users effectively.

 The list of all running subsystems:

- Host Terminal: This terminal will provide system access specific to the Host.

A floor plan will be provided for efficient and organized seating of Customers.

This terminal will be implemented with a desktop computer and a touch screen

monitor.

- Server Terminal: A wireless handheld BlackBerry with a strategically designed

user interface specific to this device will be used to provide access to the Server at

any time. This interface will also be used for notification messages. Each Server

will have his/her own handheld device for interfacing with the system.

- Bartender Terminal: This terminal will provide system access specific to the

Bartender. It will provide a menu system to facilitate ordering and notification of

drinks ordered by Servers. This will be implemented on a desktop computer and

a touch screen monitor.

- Customer Terminal: This terminal will provide system access directly to the

Customer. It will provide a way for the Customer to order directly from his/her

table or notify the Server when needed. This will be implemented on a desktop

computer and a touch screen able to be stood up and presented at the table. This

terminal will have a distinct look-and-feel aspect to appeal to the Customer,

maximizing both form and function, whereas the other terminals will only need to

maximize function.

- Manager Terminal: This terminal will provide system access to the Manager.

It will provide a means for the Managers to interact with the system. Due to the

fact that the Manager will do more typing when entering users and menu items

into the system, a keyboard and mouse will be provided at this terminal. A flat-

panel monitor and desktop computer will be used. This computer can also serve

as a general purpose computer for any use the Manager sees fit.

- Archiving Terminal: This subsystem will be the centralized server for the

entire system. It will contain the database and a backup of all necessary system

files. Database backup will occur daily and a backup copy of all necessary

system files will be saved to disk. This subsystem will also provide a means of

communication between all the other subsystems. It will be implemented with

just a desktop computer and has no need for a monitor, keyboard, or mouse. All

changes will be done remotely from the manager terminal over the network.

All Terminals will be networked wirelessly over Wi-Fi, except for the BlackBerry

which can communicate through either Bluetooth or wireless internet connection.

Hard-wired Ethernet can also be used instead on Wi-Fi if distance or weak signal

becomes an issue.

Archiving

Host Terminal

Bartender Terminal

Self-Ordering Terminal

Manager Terminal

Chef Terminal

Server Terminal
(Blackberry)

Wireless Point
of Access

Wireless
Router

Bluetooth
Communicator

 A simple diagram showing the hardware distribution of the system

Persistent Data Storage:

Persistent data storage is needed to store data necessary to outlive a single

execution of the system. That is why some objects in the models need to be

persistent. Where persistent objects provide clean separation points between

subsystems with well-defined interfaces.

The system’s persistent data storage will be realized with a database for multiple

reasons:

o Ability to hold large amounts of data

o Portability – data can be backed up or moved to another system

o Supports multiple writers and readers

o Provides interaction point between subsystems

 Persistent data necessary for storage in the database:

o Items

o Employees

o Tables

o Order History

Executable files will be saved on the local hard disk at each terminal.

Database backup will also be saved to file on the archiving terminal’s hard disk

daily.

Database Schema:

Network Protocol:

The JDBC communication protocol will be used to access the database

from within our Java program. JDBC is a Java API that enables Java programs

to execute SQL statements. This allows Java programs to interact with any

SQL-compliant database. Since nearly all relational database management

systems (DBMSs) support SQL, and because Java itself runs on most

platforms, JDBC makes it possible to write a single database application that

can run on different platforms and interact with different DBMSs. (Illustrated

diagram, see next page)

Java Appletor

 Enterprise NetBeans
JDBC

Form

DataBase

Client Machine (GUI)

Presentation Server

Server Machine
(business Logic)

Database-proprietary Protocol

Four-Tier Architecture for Data communication

Global Control Flow:

• Execution Orderness: Our system will be an event-driven system.

Actions can be generated by any user at any point in time. Once an action

is generated the system will respond accordingly, managed by the control

structure. Specific actions will follow a given procedure once they are

generated. When no actions are being taken, the system will remain idle

until user-interaction occurs. Also, multiple users can generate actions

simultaneously and each action will be handled accordingly by the control

structure.

• Time Dependency: Our system will contain multiple timers which will

be implemented as a class of their own. The timers will be used to keep

track of how long a table has gone without placing an order and also how

long it has been since a specific order has been placed. After a certain

amount of time without placing an order, the assigned Server will be

notified to go check on the table. Keeping track of how long it has been

since an order has been placed will assist the Chef with cooking times and

will help in maximizing kitchen output by helping the Chef keep track of

time more efficiently. Timers will also be used to refresh user interfaces

based on current database information.

The system is of event-response type due to the fact that the system

will only need to react to input response from multiple interfaces. Event-

Response Systems utilize a technique for specifying the syntax of multi-

threaded dialogues. They can compactly represent the concurrency needed

to implement multi-threaded dialogues. This concurrency support also

allows interfaces to be structured differently than is possible with existing

dialogue specification systems based on state transition specifications or

grammars. This flexibility allows many interfaces, especially direct

manipulation interfaces, to be specified with a more modular structure

than most existing systems allow.

 This system has no concern for a real-time response. Simply, the

response does not need to occur immediately. An order getting to the chef

is not limited to the constraints of a real-time response. A delay of even a

few seconds will not make a difference in functionality. Conceivably, an

order could take a minute or 2 to get to the kitchen and would still not

make a difference in functionality.

• Concurrency: The system uses multiple threads and also involves

multiple subsystems running independently of each other. Interaction

between the subsystems will be done either through the persistent data

storage, the database, or through the control structure. A simple example

of communication through the database would be as follows:

o 1) Server places an order for 1 bottle of Budweiser.

o 2) Database entry for Budweiser is updated.

o 3) Bartender places an order for 2 bottles of Budweiser.

o 4) Database entry for Budweiser is updated.

o 5) Manager check sales analysis to see how much Budweiser has

been sold.

o 6) Database is queried and responds with a total of 3 bottles.

As you can see from this example, no direct communication is done

directly between subsystems. The communication is done through the

database instead of communicating with the individual subsystems. This

provides a centralized location for the data to be stored and provides a

means for synchronizing data between subsystems. A simple example of

communication through the control:

o 1) Customer places an order for 1 Budweiser.

o 2) Database entry for Budweiser is updated.

o 3) Bartender is notified to fill the order.

o 4) Bartender completes the order.

o 5) Correct Server is notified to pick up the order.

o 6) Server picks up the order and delivers to table.

This example shows how separate subsystems will communicate through

the Control Layer which will be realized by the Communicator class. The

notification of both the Bartender and the Server is done by this layer and

does not involve interaction with the database.

System Requirements:

• PC with Pentium® III 1.2 GHz or faster processor, Archiving Terminal

will need 2.0 GHz or faster processor

• Microsoft® Windows XP Professional with Service Pack 2 or later,

Windows Server 2003

• VGA (1024x768) or higher-resolution touch screen monitor

• Minimum 256 MB of RAM, Archiving terminal will need minimum 1 GB

due to higher workload

• Approximately 3 GB of available hard disk space for the Point of Sale

program files and the operating system. (Hard disk usage will vary,

depending on Point of Sale’s configuration and the size of the database),

Archiving Terminal will need minimum 10GB free space

• CD-ROM or DVD drive

• Keyboard and Mouse or compatible pointing device

• Universal Serial Bus (USB) ports will be necessary

• Bluetooth Dongle

• Wireless Router, 2.4 GHz or above

• A Broadband Internet Connection

• Handheld BlackBerry device, BlackBerry 8100 recommended

• Receipt Printer: 1 USB port

• Credit Card Reader: 1 USB port

12. Algorithms and Data Structures:

Algorithms

The point of sale system most of the time provides help for the simple use cases

between the actors and the system. These simple use cases only require relatively

easy algorithms to provide adding, removing, updating items, or calculating totals of

money generated in different time frames.

However when the administrator sees the need to monitor some statistical data to

draw important business conclusions, then the algorithms involved to provide these

functionalities become somewhat complex. The main types of complex algorithms

used in our system are the search and the sort type.

Data Structures

Complex data structures are a necessity for an efficient software system. Our system

makes full use of different complex data structures like arrays, linked lists, and hash

tables based on the particular applications. Some applications require performance

rather flexibility. For these types of applications we use arrays as our main data

structure. Arrays are chosen because of their short processing time. Taking under

consideration the use of mobile blackberry devices, which are limited in hardware

performance, we tend to concentrate on the performance other than flexibility for

almost all the functions involving these devices.

Hash tables on the other hand are the data structures that allow us to achieve both.

The main reason is the ability to search on average with a constant-time O(1) just like

arrays regardless of the number of items in the table. They also allow us to perform

different searches over the same database tables giving us the flexibility to provide

changes to our statistical data analysis at any time as might be needed by the client’s

requests.

Linked lists are the other type of data structures that comes to a great help towards

flexibility. We all are familiar with the advantage that linked lists provide in the

dynamic use of memory. They also are the best way to implement the other data

structures like queues and stacks. Queues are necessary to represent the food items

waiting in the kitchen to be cooked and become ready for the server. Stacks on the

other hand are very helpful in the user screen menu where the recursive process is

required to come back to the initial screen. We acknowledge the possibility of using

other data structures in this project but for right now our main functionalities involve

arrays, linked lists and hash tables.

13. User Interface Design and Implementation:

Since the user will log-in before they are shown the main graphical user interface,

the correct GUI can be displayed depending on the type of user that they have been set to
in the system. For instance, a chef and a server would expect to see very different
screens after logging in to the system. This will help to increase the efficiency of the
system by allowing a separate interface to be built for each type of user to assist in
performing specific tasks commonly used by each of these different user types. By doing
this, the system can be navigated much quicker for the common tasks native to each user.
The main screen can also be updated with commonly sold items to allow for even less
time spent on menu navigation. Less time spent on user-interface navigation and more
time spent on data entry will allow for a more efficient use of this Point-of-Sale interface.

This system also allows the Customer to interface directly with the system,

without the need for a Server to take the order. The Customer will expect to see a GUI
much like that of the Bartender, but possibly with more descriptive items and a flashier,
eye-catching display. The Servers will also interface directly with the system through the
use of a Blackberry smartphone. The GUIs for these devices will be designed to be more
functional than eye-catching when compared to the tabletop displays for the customers.
Both allowing the Customer to interface directly with the system and letting the Server
carry their interface right on their belt or in their pocket will allow for very efficient
ordering and delivery. The Chef’s GUI will provide them with a current view of all
unfinished orders, containing all the items included in these orders, as well as a means to
call a Server at any time. And, the Host’s GUI will provide the user with a graphical
floor plan to enable them to seat customers easily and efficiently.

Some typical usage scenarios:

Bartender Scenario: Simple Cash-and-Carry Order
1) Tabbed menu groups will allow for navigation to the desired item to be ordered.
2) After choosing the item/items to be ordered, the “Send” button will be pressed to

initiate the closing of the sale.
3) Total will be shown and cash given will be entered.
4) Cash drawer will open and the money will be entered and change will be given,

thus completing the cash transaction.

Minimum # of clicks: 3

Host Scenario: Seating a Table
1) Table will be chosen from the on-screen 2D table view.
2) Number of Customers being seated will be entered.
3) Server will be notified that the table has been seated.

of clicks: 2

Server Scenario: Placing Simple Table Order
1) Table will be chosen from the Tabs midlet.
2) After choosing the item/items to be ordered, the “Send” button will be pressed to

update the table’s running tab.

Minimum # of clicks: 3

Server Scenario: Closing Table Order
1) The table will be chosen from list in the Tabs midlet.
2) The “Close” button will then be pressed to initiate the closing of the order.
3) Total will be shown and cash given will be entered.
4) The Server will then give the table the correct change and the transaction is

complete.

of clicks: 3

Customer Scenario: Ordering a Beer
1) Tabbed menu groups will allow for navigation to the desired item to be ordered.
2) After choosing the item to be ordered, the “Send” button will be pressed and the

beer will be added to the table’s running tab.
3) The Bartender will be notified to make the drink and the Server will be notified to

bring the drink to the table.

Minimum # of clicks: 2

Chef Scenario: Finishing an Order
1) Upon completion of the order, the chef will simply press the “Order Finished”

button to notify the correct Server to come pick up their food.

of clicks: 1

Administrator Scenario: Updating Item Cost
1) Select the Menu tab by clicking on it.
2) Navigate to the correct menu item using the tabbed menu groups.
3) Enter the new price and select whether tax is included in the price.
4) Click the “Update” button.

Minimum # of clicks: 3 + 1 text field

Administrator Scenario: Adding a New User
1) Enter new users First Name, Last Name, and Login ID.
2) Select the user type from the list of radio buttons.
3) Click the “Active User” checkbox to set the user as active.
4) The checkboxes to allow the user to Void and to Log Hours can also be set.
5) Then, click the “Add” button.

Minimum # of clicks: 3 + 3 text fields

Example User Interfaces:

GUI for Bartenders and Customers:

GUIs for Managers:

GUI for Host:

GUI for Chef:

The original screen mock ups were implemented using the Matisse GUI Builder

for NetBeans 5.5. This is done using a WYSIWYG interface that automatically generates
the corresponding Java source code. The Server GUI has been updated to show how it
will look on the BlackBerry device. This UI will be implemented using the BlackBerry
JDE and its contained custom UI package. Because of the small size of the BlackBerry
device, more screens will need to be traversed to select a menu item. This will mean a
customized menu system will be developed and popup menus will be utilized to switch
between windows quickly. Notifications will be sent to the phone and cause a ringer or
vibration, which each Server can customize to their own liking.

Example Main Screen with Icons for different tasks:

Focus will be shown by a change in the icon when rolled over.

Example Blackberry GUIs for selecting menu items:

The Customer, Host, Chef, Bartender, and Manager graphical interfaces will be
implemented using the Swing graphics package. The Swing package is contained in the
Java Foundation Classes (JFC) and provides a set of buttons, panes, tables, and other
common user interface components. This will provide the set of objects from which the
non-BlackBerry GUI’s will be built.

The BlackBerry JDE has a custom user interface (UI) application programming
interface (API) built on a hierarchical structure similar to Java Swing. The most basic
component of a UI is the field. Anything that can be output to the screen must be of type
Field. The two other major components of a UI are the layout manager and the screen,
which inherit from Field and Manager respectively.

Example BlackBerry GUI Layout

The BlackBerry GUI is a three level hierarchical structure in its most basic form:

Extensions of the Screen class available in the BlackBerry API set:

Ease-of-Use Analysis:

Customer:-
 The Customer’s UI must be the simplest to use. No a priori knowledge of the
system must be required for interaction with the system through this interface. This
interface will concentrate on an eye-catching menu system with easy navigation and no
need for learning. The reason for a flashy looking interface is to allure the Customer
into using the system. Keep in mind that a reduced version of the full menu will be
available on this interface to further facilitate ease-of-use. To place an order outside the
domain of this reduced menu the Customer must use the “Call Server” button to request
a server to come and take the order.

Chef:-
 The Chef’s UI will be very simple to use and will require little to no training.
The current orders will be listed in a queue. The orders will be listed in the sequence
they are expected to be completed (some simple appetizer orders may take priority over
entrée orders to increase turnover rate). Upon completion, the Chef will simply press the
“Order Complete” button and the correct Server will be notified to pick up the order.
The Chef will also be able to access recipes, retrieve past orders, and call a Server’s
attention. These few simple tasks can be done very easily and efficiently.

Host:-
 The Host’s UI will also be very simple to use and requires little to no training. A
graphical floor plan will be shown will numbered tables. When seating a table, the Host
will simply choose the table and enter the number of guests being seated. If necessary,
the Host will be able to change the Server assigned to a given table.

Manager:-
 The Manager’s UI will require only a small amount of training to use. Many of
the Manager abilities are simple to use and the layout will help facilitate this ease-of-use.
Although easy to use and to navigate, the Manager has many tasks available which is the
reason for necessary training to fully utilize all the available functions.

Bartender:-
 The Bartender’s UI will require a fair amount of training to increase speed and
efficiency. To further increase ease-of-use, a tabbed menu system will be used. Each
menu section can have its own tabs to break down the menu into specific sections.
(Example: The entrée section could contain separate chicken, beef, fish, etc tabs, each
with their own menu items.) This will make switching between item types much easier
and much quicker. All necessary functions can be accessed from the main screen.
Currently open tabs will also be listed and can be accessed directly from this screen.

Order details will also be listed on the screen and will contain a list of what the currently
opened order contains, along with a subtotal.

Server:-
 The Server’s UI will require the most training to use due to the fact that it will be
accessed from a handheld device. Because of the smaller screen, a very different UI will
be used. Navigation on this device will be slightly more involved due to the smaller
screen, but after the initial learning curve it will greatly increase order efficiency.
Multiple menu screens will be used to avoid cluttering on the BlackBerry interface. This
will further increase efficiency and ease-of-use by reducing the number of items to
choose from on each screen. Communication between the Server and other users in the
system, including Customers, will also be greatly increased due to the fact that the
Server can be notified or called at any time since they will be carrying this device with
them at all times. The Server can modify the notification settings to choose a profile that
fits them best. They can choose between vibration, ringers and tones, or a combination of
ringers and vibration.

14. History of Work & Current Status of Implementation:

Grooup13 has started coding on February 12 of 2007 developing our first product “Open

Bar” which it has a deployment day of May 3, 2007. It all started with the special interest

of our team in using engineering strategies to develop a smart and mature Point of Sale

software application. This application was designed to help any small or large size

bar/restaurant owner and personnel to achieve their perfection in managing their limited

resources.

High Velocity Bar & Grill has been our first client and has helped us through out the

whole time with the many business meetings where we have discussed and analyzed their

requirements. We have based most of our decisions on the main principles of Software

Engineering and have followed the procedures of creating many important documents.

The design principles and professional guidance that the software engineering course

have offered to our team have made possible the delivery of this complex product in such

a short time.

We list here the steps that we have been taking with the time frames corresponding to

these steps, and the transitions between them:

1. We started with the establishment of a clear Client’s Statement of Requirements.

(Feb 1, 2007)

2. From there we were able to build a better understanding about the main actors of this

system and their functionalities. This was the key that open the door to our initial

stages of coding. We started designing the User Interfaces and displayed mock up

screens to our Clients.

(Feb 12, 2007)

3. Functional Requirements and Nonfunctional Requirements were described and

included in our first document of agreement with the client, where we had listed all

the use cases and a use case diagram.

(Feb 16, 2007)

4. Sequence diagrams were built to help with the Domain analysis and a new feature of

using BlackBarry phones as mobile terminals for the waiters was added to our

product. Group 13 was divided into two new development teams to manage the two

different types of environments.

 (Feb 25, 2007)

5. System Architecture and System design were needed at this stage to be able to start

our estimation of cost for this product. Hardware requirements were presented to the

client in a second document of agreement. An SQL database was created for our

system so functionalities could start being tested with both the BlackBarry phones

and the regular PCs.

 (March 9, 2007)

6. Phase II of coding scheduled for March 15 was moved to a later date due to

complications with the BlackBerry software which required a different connection to

the database. Phase II involved combining and testing the different classes and also

provide interaction between the different users. Focus remained on the first demo of

our project.

 (March 20, 2007)

7. A few functionalities, like surfing through the menus of the BlackBerry and being

able to generate dynamically the menu of items from the database were successfully

displayed in our first demo. Interesting features were planned to be included in the

future like notifying the waiter with a vibrating buzzer when action is needed.

 (March 23, 2007)

8. Group 13 continued to test on the different parts of the software, as well as

progressing towards the goal of integration between the many modules of code.

Great effort was dedicated to debug problems that were detected after the first demo.

 (April 15, 2007)

9. We created a website were we archived all the documents and all the files used

trough out this project. We started preparations for our final demo and already

created a brochure for advertising our product to potential new clients. Estimates for

the final cost of our project were recalculated and revised.

 (April 20, 2007)

Summary of technical stages

• Used Net Beans 5.5 to build user interface for Bartender, Host and Chef.

• Installed My-SQL 5.5 and created a local database with a few tables to enable

interaction between the user interfaces and the database.

• The database driver for SQL was installed in Net Beans which allows viewing the

database tables in a GUI interface after establishing a connection.

• Different Net Beans projects were created developed independently.

• The most important classes were created and used over the different projects like

Bartender, Host and Chief. These classes include the “connectDB”, “insertDB”,

“refreshGUI”, “signIn”, “switchUser”, etc.

• Completed the GUI interfaces for the Server in BlackBerry environment.

• Established a connection to the database from the BlackBerry device.

• Completed all the User Interfaces and their functionalities.

• Designed the integration of the system and performed the integration.

• Tested the integrated system and did final adjustments. Prepared for final demo.

• Simulated a regular day of our product in action, for testing purposes before

release.

• Electronically archived all project files and documentation in Group 13 website.

Current status of Implementation

Bartender User Interface and its functionalities:

We are currently working on the notifying messages between this user and other users as
well as the closing an order or changing between orders. We are working on naming the
orders by a name chosen by the customer rather than leaving them only with an order id.

Chef User Interface and its functionalities:

This user interface is in its initial stages but the work estimated to complete this user
interface and its functionalities is corporately very small. We are also working on the
notifying messages on this user as well.

Host User Interface and its functionalities:

Most of the Host Interface and the functionalities have been completed, however we are
currently investing on having a dynamic floor plan where the administrator can update
the floor plan due to some extension of tables or remodeling the store.

Server User Interface and its functionalities:

This User Interface is being implemented in BlackBerry phones and so far we have
achieved the navigation between different screens but are currently working on the
connection of this device to the database. Also the notification for messages which is
desired to be done with a vibration ringer is still being worked on.

Manager User Interface and its functionalities:

We have designed all the functionalities but haven’t starting implementing this User
Interface yet as we think when most of our User Interfaces and their functionalities will
be fully completed then enough information will be available to perform the Managers’
functionalities.

Database Management:

Database management has been locally implement on each computer while we have been
working independently, but now we are working on moving the database to the school’s
computers and accessing it via internet.

15. Conclusions and Future Work:

When Group 13 decided to create a point of sale system for restaurants we first

envisioned it to be done with different computer programming languages such as C++

and Java. The program that we would build would then be installed separately on each

computer. These individual computers would be directly connected to one another,

allowing for data transfer through open sockets and ports. We also thought the entire

system would be small, approximately 3 computers large, but quickly learned that this

was not the case and many computers would be needed as we decided to extend our

product for Bars & Restaurants. Knowing this we realized that a direct connection

between all the computers would be extremely difficult. After much thought and

research we decided to implement a “terminal-database” model with a SQL database and

network connections to it by the different terminals. Our decision was also based in the

different techniques that we learned through out this software engineering course. This

“terminal-database” model allows all computers, or “terminals” to be connected to a

single server, in essence lowering coupling. Communication would be much easier

because all the most updated data would be stored on the database.

We also encountered other challenges when we made this decision. The innovated idea of

providing servers with mobile terminals brought up the issue of having different types of

connection to our database. The BlackBerry phones which used a totally different

approach to connect to the database were suspected to be slower than the regular network

connection chosen for the rest of the users. Testing this issue was extremely time

consuming and virtually impossible.

The product that Group 13 had planned to develop initially had in mind the small

Restaurants and the help that they needed to follow the easiest transition from the old

fashion way of pen and paper to the new era of technology were the electronic data is

used to offer more secure, more accurate and more flexible transactions. To achieve this

transition we were aware that it would require a complex Software Product and maybe

we didn’t have the right level of experience. So we started analyzing our past

experiences.

When given a coding assignment in the past, most of us would usually begin by just

coding. With short preparation and no outlining this was often difficult and the desired

result would get harder to implement as the size grew. We would often begin by coding

what we believed was the correct software and alter and change the code as we needed.

For simple programs this would work. Once the programs became more difficult, many

problems would arise. For example, with no “blueprints,” or preparation, an unexpected

problem may be too difficult to resolve on and the only solution is to begin coding all

over again. For this project we took a different approach, using methods we learned in

the Intro to Software Engineering class.

In Intro to Software Engineering we were taught various techniques to develop software.

One of these methods was UML or Unified Modeling Language. This is a developing

standard that helped us to create all the small pieces of our software system. Once we

constructed all the small parts, we were able to connect them and see how they would

interact with each other before the actually coding. This allowed us to analyze every

small piece of the software design, isolate problems and fix them without having to

revisit the entire program.

We used the UML knowledge we learned in class to create use cases, system sequence

diagrams, class diagrams as well as many other things. By doing this we were able to

“blue print” the entire software project. This made it easy to code the final program. All

we had to do is put all the little pieces together to make one working piece of software.

This technique of software engineering also allows for simple extensions or updates in

the program. Since the layout is devised a certain way, addictions would not need a

restructure of the software.

When we began this course most of us had a deep understanding of C++. We have all

taken courses in this language and understand it thoroughly. When faced with this

project, we learned that C++ would not be enough. We began learning Java and became

familiar with Net Beans. We also had to become familiar with BlackBerry software and

learn how to query in SQL. Our final project would not meet the standards we were

looking for if we weren’t able to use of these other programming languages. Much of

these programming languages are closely related and easy to understand, especially with

the C++ programming methodologies learned in previous classes.

The conclusions that we are able to draw from our experience in this project can be

summarized in saying that it would have been impossible to complete our product if we

didn’t use the principles of Software Engineering learned in this course. Not only we

developed a better understanding in software development but we also realized that

breaking down the project in subsystems and then reattaching them allows for future

features to be added.

Keeping this in mind we plan to implement a few other features to our Point Of Sale

product. One of the features involves the option for customers to order from a computer

at home and pick up their order or have it delivered to them. Looking at the same feature

but thinking of the use that we made of the BlackBerry phones we can easily supply a

customer interface where a customer that owns a BlackBerry phone can order from

anywhere. Perhaps this would offer the luxury of ordering the food on the way home

from work and make a quick stop to pick it up, and everything is going to be ready

exactly when the customer gets there.

Another feature that we plan to implement in the future is also the customers

memberships where a customer will have an account and they are going to be provided

with a pin that they can enter anytime they order, being online or at the restaurant or bar.

Discounts will be offered to the customer for joining this membership for the fact being

that this will reduce the employees work on taking down a payment and asking for

signature.

Group 13 has been proud to work on this project and looks forward to our next project.

16. References:

Software Engineering, Ivan Marsic, Department of Electrical and Computer

Engineering, Rutgers University:
http://www.caip.rutgers.edu/~marsic/books/SE/book-SE_marsic.pdf

Bernd Bruegge and Allen H. Dutoit:

Object-Oriented Software Engineering: Using UML, Patterns and Java, Second Edition,

Prentice Hall, Upper Saddle River, NJ, 2004.

ISBN 0-13-0471100

Russ Miles and Kim Hamilton: Learning UML 2.0, Second Edition,

O'Reilly Media, Inc., Sebastopol, CA, 2006.

ISBN 0-596-00982-8

Java: The Complete Reference Seventh Edition by Herbert Schlidt

JSR 209: Advanced Graphics and User Interface Optional Package for the J2METM

Platform:

http://jcp.org/en/jsr/detail?id=209

Trail: Creating a GUI with JFC/Swing:

http://java.sun.com/docs/books/tutorial/uiswing/index.html

Java: The Complete Reference Seventh Edition by Herbert Schlidt

Matisse GUI Builder for Net-Beans:

 http://www.netbeans.org/kb/55/quickstart-gui.html

Blackberry Java Development Environment Fundamentals Guide:

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045

/8655/8656/1271077/BlackBerry_Java_Development_Environment_Fundamentals_Guid

e.pdf?nodeid=1271322&vernum=0

Desktop API Reference Guide:

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/8067/645045

/8655/336229/1195268/_Desktop_API_Reference_Guide.pdf?nodeid=1195442&vernum

=0

Blackberry Graphical User Interface Part 1:

http://na.blackberry.com/eng/developers/resources/journals/jul_2005/BlackBerryDevelop

erJournal-0202.pdf (p27-32)

Blackberry Developer - Getting Started:

http://blackberryforums.pinstack.com/540-blackberry_developer_geting_started.html

Blackberry Developer Journal:

 http://www.blackberry.com/developers/journal/

What Is - Blackberry UI hierarchy:

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/7965

57/800332/800505/800608/What_Is_-

_BlackBerry_UI_hierarchy.html?nodeid=800513&vernum=0

A Four-Tier Model of A Web-Based Book-Buying System:
http://web.mit.edu/6.826/www/notes/6826-project.pdf

JDBC Introduction:
http://java.sun.com/docs/books/tutorial/jdbc/overview/index.html

What is JDBC?:
http://www.webopedia.com/TERM/J/JDBC.html

Java Database Connectivity:
http://en.wikipedia.org/wiki/Java_Database_Connectivity

CS 4773 Object Oriented Systems
Threads and
Synchronization:http://vip.cs.utsa.edu/classes/cs4773s2000/notes/cs4773.topic08.html
Silverware POS Software and User Manuals, Forsys Corporation:
http://www.forsyscorp.com

