
© Copy Right: Rai University
3B.582 31

PR
O

G
R

A
M

M
I N

G
 M

ETH
O

D
O

LO
G

Y

Objective
• Introduction to object oriented programming
• Features of OOPS
• Benefits of OOPS
• Applications of OOPS

Basic Concept
Let’s get an idea of what is OOPS. C++ & Java are the Object
Oriented Programming language. The limitations of C language
are evident when a software project is too large to be handled.
In some circumstances, error occur at some place and some
patch up programs are added to rectify that error. These
programs introduce an unexpected error at some other location
and this process continues.
In 1980 Bjarne Stroustrup addressed this problem by adding
several extensions to C language. The most important addition
was the concept of CLASS . The addition made were mainly
aimed at extending the language in such a way that it supports
object-oriented programming.

Object Oriented Programming Pattern
Inspiring factor in the invention of object-oriented approach is
to remove some of the flaws encountered in the procedural
approach. OOP treats data as a critical element in the program
development and does not allow it to flow freely around the
system. It ties data more closely to the functions that operate on
it, and protects it from accidental modification from outside
functions. OOP allows decomposition of a problem into a
number of entities called objects and then builds data and
functions around these objects.
Following fig shows the organization of data and functions in
object-oriented programs .The data of an object can be accessed
only by the functions associated with that object. However,
functions of one object can access the functions of other
objects.

Object A Object B

Communication

 Object C

DATA

FUNCTION

DATA

FUNCTION

DATA

FUNCTION

Organization of data and functions in OOP

Characteristics of Oriented Programming

• Emphasis is on data rather than procedure.
• Programs are divided into what are known as objects.
• Data structures are designed such that they characterize the

objects.
• Functions that operate on the data of an object are tied

together in the data structure.
• Data is hidden and cannot be accessed by external

functions.
• Objects may communicate with each other through

functions.
• New data and functions can be easily added whenever

necessary.
• Follows bottom-up approach in program design.
Definition: “Object-oriented programming as an approach that
provides a way of modularizing programs by creating parti-
tioned memory area for both data and functions that can be
used as templates for creating copies of such modules on
demand.”
Thus, an object is considered to be partitioned area of com-
puter memory that stores data and set of operations that can
access that data. Since the memory partitions are independent,
the objects can be used in a variety of different programs
without modifications.

Basic Concepts of Object-oriented Programming
It is necessary to understand some of the concepts used
extensively in object-oriented

Programming

They are:
• Objects
• Classes
• Data abstraction and encapsulation
• Inheritance
• Polymorphism
• Dynamic binding
• Message passing

Objects
Objects are the basic run-time entities in an object-oriented
system. They may represent a person, a place, a bank account, a
table of data or any item that the program has to handle. They
may also represent user-defined data such as vectors, time and
lists.
Objects take up space in the memory and have an associated
address like a record in Pascal, or a structure in C.
When a program is executed, the objects interact by sending
messages to one another. For example, if “customer” and

LESSON 9:
OBJECT ORIENTED PROGRAMMING CONCEPTS

32 3B.582
© Copy Right: Rai University

PR
O

G
R

A
M

M
I N

G
 M

ETH
O

D
O

LO
G

Y

“account” are two objects in a program, then the customer
object may send a message to the account object requesting for
the bank balance. Each object contains data, and code to
manipulate the data. Objects can interact without having to
know details of each other’s data or code. It is sufficient to
know the type of message accepted, and the type of response
returned by the objects. Although different authors represent
them differently.
Fig. Shows two notations that are popularly used in object-
oriented analysis and design.

Object:

STUDENT

DATA

Name

Date-f-birth

Marks

FUNCTIONS

Total

Average

Display

Two Ways of Representing an Object

 STUDENT
Total

Average

Display

Classes
Objects contain data, and code to manipulate that data. The
entire set of data and code of an object can be made a user-
defined data type with the help of a class. In fact, objects are
variables of the type class. Once a class has been defined, we can
create any number of objects belonging to that class. Each
object is associated with the data of type class with which they
are created.

Definition
A class is a collection of objects of similar type.
For e.g., mango, apple and orange are members of the class
fruit. Classes are user-defined data types and behave like the
built-in types of a programming language. The syntax used to

create an object is no different than the syntax used to create an
integer object in C. If fruit has been defined as a class, then the
statement
Fruit mango;
will create an object mango belonging to the class fruit.

Data Abstraction and Encapsulation
The wrapping up of data and functions into a single unit (called
class) is known as encapsulation. Data encapsulation is the most
striking feature of a class. The data is not accessible to the
outside world, and only those functions, which are wrapped in
the class, can access it. These functions provide the interface
between the object’s data and the program. This insulation of
the data from direct access by the program is called data hiding
or information hiding.
Abstraction refers to the act of representing essential features
without including the background details or explanations.
Classes use the concept of abstraction and are defined as a list
of abstract attributes such as size, weight and cost, and
functions to operate on these attributes. They encapsulate all the
essential properties of the objects that are to be created. The
attributes are sometimes called data members because they hold
information. The functions that operate on these data are
sometimes called methods or member functions.
Since the classes use the concept of data abstraction, they are
known as Abstract Data Types (ADT)

Inheritance
Inheritance is the process by which objects of one class acquire
the properties of objects of another class. For example, the bird
‘robin’ is a part of the class “flying bird’ which is again a part of
the class ‘bird’. The prin-ciple behind this sort of division is
that each derived class shares common characteristics with the
class from which it is derived as illustrated in Fig.
Concept of inheritance provides the idea of reusability. This
means that we can add additional features to an existing class
without modifying it. This is possible by deriving a new class
from the existing one. The new class will have the combined
features of both the classes. The real appeal and power of the
inheritance mechanism is that it allows the programmer to reuse
a class that is almost, but not exactly, what he wants, and to
tailor the class in such a way that it does not introduce any
undesirable side-effects into the rest of the classes.
Note that each sub-class defines only those features that are
unique to it. Without the use of classification, each class would
have to explicitly include all of its features.

© Copy Right: Rai University
3B.582 33

PR
O

G
R

A
M

M
I N

G
 M

ETH
O

D
O

LO
G

Y

 Bird

Attributes
Feathers
Lay eggs

Flying Bird
Attributes

Non-Flying Bird
Attributes

Robin
Attributes

Swallow
Attributes

Penguin
Attributes

Kiwi
Attributes

Fig. Property inheritance

Polymorphism
Polymorphism, means the ability to take more than one form.
An operation may exhibit different behaviors in different
instances. The behavior depends upon the types of data used in
the operation.
For e.g., consider the operation of addition of two numbers,
the operation will generate a sum. If the operands are strings,
then the operation would produce a third string by concatena-
tion.
The process of making an operator to exhibit different
behaviors in different instances is known as operator overload-
ing.
Figure below illustrates that a single function name can be used
to handle different number and different types of arguments.
This is something similar to a particular word having several
different meanings depending on the context. Using a single
function name to perform different types of tasks is known as
function overloading.
Polymorphism plays an important role in allowing objects
having different internal structures to share the same external
interface. This means that a general class of operations may be
accessed in the same manner even though specific actions
associated with each operation may differ. Polymorphism is
extensively used in implementing inheritance.

 Shape
Draw ()

 Circle object
Draw (circle)

 Box object
Draw (box)

 Triangle object
Draw (triangle)

Fig. Polymorphism

Dynamic Binding
Binding refers to the linking of a procedure call to the code to
be executed in response to the call. Dynamic binding (also
known as late binding) means that the code associated with a
given procedure call is not known until the time of the call at
run-time. It is associated with polymorphism and inheritance.

A function call associated with a polymorphism reference
depends on the dynamic type of that reference.
E.g. Consider the procedure “draw” in Fig. By inheritance, every
object will have this procedure. Its algorithm is, however,
unique to each object and so the draw procedure will be
redefined in each class that defines the object. At run-time, the
code matching the object under current reference will be caned.

Message Passing
An object-oriented program consists of a set of objects that
communicate with each other. The process of programming in
an object-oriented language, therefore, involves the following
basic steps:
1. Creating classes that define objects and their behavior,
2. Creating objects from class definitions, and
3. Establishing communication among objects.
Objects communicate with one another by sending and
receiving information much the same way as people pass
messages to one another. The concept of message passing
makes it easier to talk about building systems that directly
model or simulate their real-world counterparts.
A message for an object is a request for execution of a proce-
dure, and therefore will invoke a function (procedure) in the
receiving object that generates the desired result. Message
passing involves specifying the name of the object, the name of
the function (message) and the information to be sent.
Objects have a life cycle. They can be created and destroyed.
Communication with an object is feasible as long as it is a’1ive.

Benefits of oop
OOP offers several benefits to both the program designer and
the user. Object-orientation contributes to the solution of
many problems associated with the development and quality of
software products. The new technology promises greater
programmer productivity, better quality of software and lesser
maintenance cost. The principal advantages are:
Through inheritance, we can eliminate redundant code and
extend the use of existing classes.
• We can build programs from the standard working

modules that communicate with one another, rather than
having to start writing the code from scratch. This leads to
saving of development time and higher productivity.

• The principle of data hiding helps the programmer to build
secure programs that cannot be invaded by code in other
parts of the program.

• It is possible to have multiple instances of an object to co-
exist without any interference.

• It is possible to map objects in the problem domain to
those in the program.

• It is easy to partition the work in a, project based on objects.
• The data-centered design approach enables us to capture

more details of a model in implementable form.
• Object-oriented systems can be easily upgraded from small

to large systems.

34 3B.582
© Copy Right: Rai University

PR
O

G
R

A
M

M
I N

G
 M

ETH
O

D
O

LO
G

Y

• Message passing techniques for communication between
objects makes the interface descriptions with external
systems much simpler.

• Software complexity can be easily managed.
While it is possible to incorporate all these features in an object-
oriented system, their importance depends on the type of the
project and the preference of the programmer. There are a
number of issues that need to be tackled to reap some of the
benefits stated above. For instance, object libraries must be
available for reuse. The technology is still developing and,
current products may be superseded quickly. Strict controls and
protocols. need to be developed if reuse is not to be compro-
mised.
Developing software that is easy to use makes it hard to build.
It is hoped that the object-. oriented programming tools would
help manage this problem.

Object Oriented Languages
Object-oriented programming is not the right of any particular
language. Like structured.
Programming, OOP concepts can be implemented using
languages such as C and Pascal. However, programming
becomes clumsy and may generate confusion when the
programs grow large. A language that is specially designed to
support the OOP concepts makes it easier to implement them.
The languages should support several of the OOP concepts to
claim that they are object., oriented. Depending upon the
features they support, they can be classified into the following
two categories:
1. Object-based programming languages, and
2. Object-oriented programming languages.
Object-based programming is the style of programming that
primarily supports encapsulation and object identity. Major
features that are required for object-based programming are:
• Data encapsulation
• Data hiding and access mechanisms
• Automatic initialization and clear-up of objects
• Operator overloading
Languages that support programming with objects are said to
be object-based programming languages. They do not support
inheritance and dynamic binding. Ada is a typical object-based
programming language.
Object-oriented programming incorporates all of object-based
programming features along with two additional features,
namely, inheritance and dynamic binding. Object-oriented
programming can therefore be characterized by the following
statement:
Object-based features + inheritance + dynamic binding
Languages that support these features include C++, Smalltalk,
Object Pascal and Java. There are a large number of object-based
and object-oriented programming languages.

Applications of Oop
Applications of OOP are beginning to gain importance in many
areas. The most popular application of object-oriented

programming, up to now, has been in the area of user interface
design such as windows. Hundreds of windowing systems
have been developed, using the OOP techniques.
Real-business systems are often much more complex and
contain many more objects with complicated attributes and
methods. OOP is useful in these types of applications because
it can simplify a complex problem. The promising areas for
application of OOP include:
• Real-time systems
• Simulation and modeling
• Object-oriented databases
• Hypertext, hypermedia and expertext
• AI and expert systems
• Neural networks and Parallel programming Decision

support and office automation systems
• CIM/CAM/CAD systems
Object-oriented technology is certainly going to change the way
the software engineers think, analyze, design and implement
future systems.

Points to Ponder
Object-oriented programming as an approach that provides a
way of modularizing programs by creating partitioned memory
area for both data and functions that can be used as tempalates
for creating copies of such modules on demand.”
• A class is a collection of objects of similar type
• Inheritance is the process by which objects of one class

acquire the properties of objects of another class.
• Polymorphism, means the ability to take more than one

form.
• Dynamic binding (also known as late binding) means that

the code associated with a given procedure call is not known
until the time of the call at run-time

• Object-orientation contributes to the solution of many
problems associated with the development and quality of
software products

• Object-oriented programming incorporates all of object-
based programming features along with two additional
features, namely, inheritance and dynamic binding

• The most popular application of object-oriented
programming, up to now, has been in the area of user
interface design such as windows

Questions
1. Discuss features of OOPS
2. What do you mean by Dynamic Binding? How it is useful

in OOPS
3. What are the Applications of OOPS?

Reference

• Object Oriented Programming With C++
By E Balagurusamy

• Let US C++
By Yashwant Kanetkar.

